Free Access
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 3, 2012
Page(s) 303 - 313
Published online 23 July 2012
  • Baxter C., Hauer R.F. and Woessner W.W., 2003. Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Trans. Am. Fish. Soc., 132, 493–502. [Google Scholar]
  • Benfield E.F., 1997. Comparisons of litterfall input to streams. J. N. Am. Benthol. Soc., 16, 104–108. [CrossRef] [Google Scholar]
  • Blott S.J. and Pye K., 2001. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land., 26, 1237–1248. [Google Scholar]
  • Boulton A.J., 2000. River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosyst. Health, 6, 108–118. [Google Scholar]
  • Boulton A., Datry T., Kasahara T., Mutz M. and Stanford J., 2010. Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. J. N. Am. Benthol. Soc., 29, 26–40. [Google Scholar]
  • Bretschko G., 1991. The limnology of a low order alpine gravel stream (Ritrodat-Lunz study area, Austria). Verh. Internat. Verein. Limnol., 24, 1908–1912. [Google Scholar]
  • Bretschko G. and Moser H., 1993. Transport and retention of matter in riparian ecotones. Hydrobiologia, 251, 95–101. [CrossRef] [Google Scholar]
  • Brunke M. and Gonser T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol., 37, 1–33. [CrossRef] [Google Scholar]
  • Cornut J., Elger A., Lambrigot D., Marmonier P. and Chauvet E., 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biol., 55, 2541–2556. [Google Scholar]
  • Crocker M.T. and Meyer J.L., 1987. Interstitial dissolved organic carbon in sediments of a southern Appalachian headwater stream. J. N. Am. Benthol. Soc., 6, 159–167. [Google Scholar]
  • Cummins K.W., 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am. Midl. Nat., 67, 477–504. [Google Scholar]
  • Cummins K.W., Sedell J.R., Swanson F.J., Minshall G.W., Fisher S.G., Cushing C.E., Petersen R.C. and Vannote R.L., 1983. Organic matter budgets for stream ecosystems: problems in their evaluation. In: J.R. Barnes and G.W. Minshall (eds.), Stream Ecology. Application and Testing of General Ecological Theory, Plenum Press, New York, 299–353. [Google Scholar]
  • Cummins K.W., Wilzbach M.A., Gates D.M., Perry J.B. and Taliaferro W.B., 1989. Shredders and riparian vegetation. Bioscience, 39, 24–30. [CrossRef] [Google Scholar]
  • Folk R.L. and Ward W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. J. Sediment. Petrol., 27, 3–26. [Google Scholar]
  • Gessner M.O. and Chauvet E., 1994. Importance of microfungi in controlling breakdown rates of leaf litter. Ecology, 75, 1807–1817. [CrossRef] [Google Scholar]
  • Gibert J., Dole-Olivier M.-J., Marmonier P. and Vervier P., 1990. Surface water-groundwater ecotones. In: R.J. Naiman and H. Décamps (eds.), The Ecology and Management of Aquatic-Terrestrial Ecotones, United Nations Educational, Scientific, and Cultural Organization, Paris and Parthenon Publishers, Carnforth, UK, 199–226. [Google Scholar]
  • Godbout L. and Hynes H.B.N., 1982. The three-dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia, 97, 87–96. [CrossRef] [Google Scholar]
  • Graça M.A.S., 2001. The role of invertebrates on leaf litter decomposition in streams – a review. Int. Rev. Hydrobiol., 86, 383–393. [Google Scholar]
  • Grimm N.B. and Fisher S.G., 1984. Exchange between interstitial and surface waters: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219–228. [CrossRef] [Google Scholar]
  • Herbst G.N., 1979. Detrital leaf dynamics in a lowland forest stream. Ph.D. Dissertation, University of Wisconson, Madison, WI, USA, 191 p. [Google Scholar]
  • Herbst G.N., 1980. Effects of burial on food value and consumption of leaf detritus by aquatic invertebrates in a lowland forest stream. Oikos, 35, 411–424. [CrossRef] [Google Scholar]
  • Hieber M. and Gessner M.O., 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038. [CrossRef] [Google Scholar]
  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Jones J.B., 1997. Benthic organic matter storage in streams: influence of detrital import and export, retention mechanisms, and climate. J. N. Am. Benthol. Soc., 16, 109–119. [Google Scholar]
  • Jones J.B., Fisher S.G. & Grimm N.B., 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology, 76, 942–952. [Google Scholar]
  • Kaushik N.K. and Hynes H.B.N., 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobiol., 68, 465–515. [Google Scholar]
  • Keller E.A. and Swanson F.J., 1979. Effects of large organic material on channel form and fluvial processes. Earth Surf. Process., 4, 361–380. [Google Scholar]
  • Leichtfried M., 1985. Organic matter in gravel streams (Project Ritrodat-Lunz). Verh. Internat. Verein. Limnol., 22, 2058–2062. [Google Scholar]
  • Leichtfried M., 1988. Bacterial substrates in gravel beds of a second order alpine stream (Project Ritrodat-Lunz). Verh. Internat. Verein. Limnol., 23, 1325–1332. [Google Scholar]
  • Malmqvist B., Nilsson L.M. and Svensson B.S., 1978. Dynamics of detritus in a small stream in southern Sweden and its influence on the distribution of the bottom animal communities. Oikos, 31, 3–16. [CrossRef] [Google Scholar]
  • Maridet L., Wasson J.-G. & Phillippe M., 1992. Vertical distribution of fauna in the bed sediment of three running water sites: influence of physical and trophic factors. Regul. Rivers: Res. Manage., 7, 45–55. [Google Scholar]
  • Maridet L., Phillippe M., Wasson J.-G. and Mathieu J., 1996. Spatial and temporal distribution of macroinvertebrates and trophic variables within the bed sediment of three streams differing by their morphology and riparian vegetation. Arch. Hydrobiol., 136, 41–64. [Google Scholar]
  • Maridet L., Philippe M., Wasson J.-G. and Mathieu J., 1997. Seasonal dynamics and storage of particulate organic matter within bed sediment of three streams with contrasted riparian vegetation and morphology. In: Gibert J., Mathieu J. and Fournier F. (eds.), Groundwater/Surface Water Ecotones: Biological and Hydrological Interactions and Management Options, Cambridge University Press, Cambridge: 68–74. [CrossRef] [Google Scholar]
  • Metzler G.M. and Smock L.A., 1990. Storage and dynamics of subsurface detritus in a sandbottomed stream. Can. J. Fish. Aquat. Sci., 47, 588–594. [Google Scholar]
  • Minshall G.W., Petersen R.C., Cummins K.W., Bott T.L., Kenneth W., Sedell J.R., Cushing C.E., and Vannote R.L., 1983. Interbiome Comparison of Stream Ecosystem Dynamics. Ecol. Monogr., 53, 1–25. [Google Scholar]
  • Naegeli M.W., Hartmann U., Meyer E.I. and Uehlinger U., 1995. POM-dynamics and community respiration in the sediments of a floodprone prealpine river (Necker, Switzerland). Arch. Hydrobiol., 133, 339–347. [Google Scholar]
  • Newbold J.D., Elwood J.W., O'Neill R.V., and Van Winkle W., 1981. Measuring nutrient spiralling in streams. Can. J. Fish. Aquat. Sci., 38, 860–863. [Google Scholar]
  • Newbold J.D., Mulholland P.J., Elwood J.W. and O'Neill R.V., 1982. Organic carbon spiralling in stream ecosystems. Oikos, 38, 266–272. [CrossRef] [Google Scholar]
  • Orghidan T., 1959. Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol., 55, 392–414. [Google Scholar]
  • Rounick J.S. and Winterbourn M.J., 1983. Leaf processing in 2 contrasting beech forest streams – effects of physical and biotic factors on litter breakdown. Arch. Hydrobiol., 96, 448–474. [Google Scholar]
  • Schwoerbel J., 1961. Über die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Arch. Hydrobiol. Suppl., 25, 182–214. [Google Scholar]
  • Schwoerbel J., 1964. Die Wassermilben (Hydrachnellae und Limnohalacaridae) als Indikatoren einer biozonotischen Gliederung von Breg und Brigach sowie der obersten Donau. Arch. Hydrobiol. Suppl., 27, 386–417. [Google Scholar]
  • Short R.A. and Ward J.V., 1981. Benthic detritus dynamics in a mountain stream. Ecography, 4, 32–35. [CrossRef] [Google Scholar]
  • Smock L.A., 1990. Spatial and temporal variation in organic matter storage in low-gradient, headwater streams. Arch. Hydrobiol., 118, 169–184. [Google Scholar]
  • Smock L.A., Metzler G.M. and Gladden J.E., 1989. Role of debris dams in the structure and functioning of low-gradient headwater streams. Ecology, 70, 764–775. [CrossRef] [Google Scholar]
  • Smock L.A., Smith L.C., Jones J.B. and Hooper S.M., 1994. Effects of drought and a hurricane on a coastal headwater stream. Arch. Hydrobiol., 131, 25–38. [Google Scholar]
  • Sobczak W.V., Hedin L.O., and Klug M.J., 1998. Relationships between bacterial productivity and organic carbon at a soil-stream interface. Hydrobiologia, 386, 45–53. [CrossRef] [Google Scholar]
  • StatSoft Inc., 2001. Statistica 6.0: Electronic Statistics Textbook. Available at: html [Google Scholar]
  • Strayer D.L., May S.E., Nielsen P., Wollheim W. and Hausam S., 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch. Hydrobiol., 140, 131–144. [Google Scholar]
  • Suberkropp K., 1998. Microorganisms and organic matter processing. In: Naiman R.J. and Bilby R.E. (eds.), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion, Springer-Verlag, New York, 120–143. [CrossRef] [Google Scholar]
  • Tank J.L., Rosi-Marshall E.J., Griffiths N.A., Entrekin S.A. and Stephen M.L., 2010. A review of allochthonous organic matter dynamics and metabolism in streams. J. N. Am. Benthol. Soc., 29, 118–146. [Google Scholar]
  • Triska F.J., Kennedy V.C., Avanzino R.J., Zellweger G.W. and Bencala K.E., 1989. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes. Ecology, 70, 1893–1905. [CrossRef] [Google Scholar]
  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130–137. [Google Scholar]
  • Vervier P., Gibert J., Marmonier P. and Dole-Olivier M.-J., 1992. A perspective on the permeability of the surface freshwater-groundwater ecotone. J. N. Am. Benthol. Soc., 11, 93–102. [Google Scholar]
  • Wagner R., Schmidt H.H. and Marxsen J., 1993. The hyporheic habitat of the Breitenbach, spatial structure and physicochemical conditions as a basis for benthic life. Limnologica, 23, 285–294. [Google Scholar]
  • Webster J.R., 1975. Analysis of potassium and calcium dynamics in stream ecosystems on three southern Appalachian watersheds of contrasting vegetation, Ph.D. Dissertation, University of Georgia, Athens. [Google Scholar]
  • Webster J.R. and Benfield E.F., 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst., 17, 567–594. [Google Scholar]
  • Webster J.R. and Meyer J.L., 1997. Organic matter budgets for streams: a synthesis. J. N. Am. Benthol. Soc., 16, 141–161. [Google Scholar]
  • Webster J.R. and Patten B.C., 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol. Monogr., 49, 51–72. [Google Scholar]
  • Webster J.R., Benfield E.F., Golladay S.W., Hill B.H., Hornick L.E., Kazmierczak R.F. and Perry W.E., 1987. Experimental studies of physical factors affecting seston transport in streams. Limnol. Oceanogr., 32, 848–863. [Google Scholar]
  • White D.S., 1993. Perspectives on defining and delineating hyporheic zones. J. N. Am. Benthol. Soc., 12, 61–69. [CrossRef] [Google Scholar]
  • Williams D.D. and Hynes H.B.N., 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biol., 4, 233–256. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.