Open Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 3, 2012
Page(s) 253 - 266
DOI https://doi.org/10.1051/limn/2012009
Published online 23 July 2012
  • Aller R.C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P.L. and Tevesz, M.J.S. (eds.), Animal Sediment Relations. The Biogenic Alteration of Sediments, Plenum Publishing Corporation, New York, 53–102. [CrossRef] [Google Scholar]
  • Aller R.C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem. Geol., 114, 331–345. [Google Scholar]
  • Atalah J., Otto S.A., Anderson M.J., Costello M.J., Lenz M. and Wahl M., 2007. Temporal variance of disturbance did not affect diversity and structure of a marine fouling community in north-eastern. New Zealand. Mar. Biol., 153, 199–211. [Google Scholar]
  • Baker M.A., Dahm C.N. and Valett H.M., 1999. Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnol. Oceanogr., 44, 1530–1539. [Google Scholar]
  • Bärlocher F., Seena S., Wilson K.P. and Williams D.D., 2008. Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshwater Biol., 53, 368–379. [Google Scholar]
  • Battin T.J., 2000. Hydrodynamics is a major determinant of streambed biofilm activity: From the sediment to the reach scale. Limnol. Oceanogr., 45, 1308–1319. [Google Scholar]
  • Battin T.J., Wille A., Sattler B. and Psenner R., 2001. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl. Environ. Microbiol., 67, 799–807. [Google Scholar]
  • Bencala K.E., 1993. A perspective on stream-catchment connections. J. N. Am. Benthol. Soc., 12, 44–47. [Google Scholar]
  • Bencala K.E., 2000. Hyporheic zone hydrological processes. Hydrol. Process., 14, 2797–2798. [Google Scholar]
  • Birgand F., Skaggs R.W., Chescheir G.M. and Gilliam J.W., 2007. Nitrogen removal in streams of agricultural catchments – a literature review. Crit. Rev. Environ. Sci. Technol., 37, 381–487. [Google Scholar]
  • Bouletreau S., Garabetian F., Sauvage S. and Sánchez-Pérez J.M., 2006. Assessing the importance of self-generated detachment process in river biofilm models. Freshwater Biol., 51, 901–912. [Google Scholar]
  • Boulton A.J., 2000. The functional role of the hyporheos. Verh. Int. Ver. Theor. Angew. Limnol., 27, 51–63. [Google Scholar]
  • Boulton A.J., 2005. Chances and challenges in the conservation of groundwater-dependent ecosystems. Aquat. Conserv.: Mar. Freshwater Ecosyst., 15, 319–323. [Google Scholar]
  • Boulton A.J., Scarsbrook M.R., Quinn J.M. and Burrell G.P., 1997. Land-use effects on the hyporheic ecology of five small streams near Hamilton, New Zealand. N. Z. J. Mar. Freshwater Res., 31, 609–622. [Google Scholar]
  • Boulton A.J., Findlay S., Marmonier P., Stanley E.H. and Valett H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 59–81. [Google Scholar]
  • Boulton A.J., Fenwick G.D., Hancock P.J. and Harvey M.S., 2008. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst., 22, 103–116. [Google Scholar]
  • Boulton A.J., Datry T., Kasahara T., Mutz M. and Stanford J.A., 2010. Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. J. N. Am. Benthol. Soc., 29, 26–40. [Google Scholar]
  • Bretschko G. and Leichtfried M., 1987. The determination of organic matter in river sediments. Arch. Hydrobiol. Suppl., 68, 403–417. [Google Scholar]
  • Bretschko G. and Leichtfried M., 1988. Distribution of organic matter and fauna in a second order alpine gravel stream (RITRODAT-Lunz). Verh. Int. Verein. Limnol., 23, 1333–1339. [Google Scholar]
  • Bridge J., 2005. High resolution in-situ monitoring of hyporheic zone biogeochemistry, Science Report SC030155/SR3, Environment Agency, Bristol, 51 p. [Google Scholar]
  • Brunke M. and Gonser T., 1999. Hyporheic invertebrates – the clinal nature of interstitial communities structured by hydrological exchange and environmental gradients. J. N. Am. Benthol. Soc., 18, 344–362. [Google Scholar]
  • Buffington J.M. and Tonina D., 2009. Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geogr. Compass, 3, 1038–1062. [Google Scholar]
  • Burns A. and Ryder D.S., 2001. Potential for biofilms as biological indicators in Australian riverine systems. Ecol. Manage. Rest., 2, 53–63. [Google Scholar]
  • Burt T., Pinay G. and Sabater S., 2010. What do we still need to know about the ecohydrology of riparian zones? Ecohydrology, 3, 373–377. [CrossRef] [MathSciNet] [Google Scholar]
  • Cardenas M.B., Wilson J.L. and Zlotnik V.A., 2004. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resour. Res., 40, W08307. [Google Scholar]
  • Carpenter S.R., Fisher S.G., Grimm N.B. and Kitchell J.F., 1992. Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst., 23, 119–139. [Google Scholar]
  • Chamberlain P.M., Bull I.D., Black H.I.J., Ineson P. and Evershed R.P., 2006. Collembolan trophic preferences determined using fatty acid distributions and compound-specific stable carbon isotope values. Soil Biol. Biochem., 38, 1275–1281. [Google Scholar]
  • Claret C., Marmonier P., Boissier J.M., Fontvieille D. and Blanc P., 1997. Nutrient transfer between parafluvial interstitial water and river water: influence of gravel bar heterogeneity. Freshwater Biol., 37, 657–670. [Google Scholar]
  • Claret C., Marmonier P. and Bravard J.P., 1998. Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river. Aquat. Sci., 60, 33–55. [Google Scholar]
  • Claret C., Boulton A.J., Dole-Olivier M.J. and Marmonier P., 2001. Functional processes versus state variables: interstitial organic matter pathways in floodplain habitats. Can. J. Fish. Aquat. Sci., 58, 1594–1602. [Google Scholar]
  • Clement J.C., Pinay G. and Marmonier P., 2002. Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J. Environ. Qual., 31, 1025–1037. [Google Scholar]
  • Clement J.C., Shrestha J., Ehrenfeld J.G. and Jaffe P.R., 2005. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem., 37, 2323–2328. [Google Scholar]
  • Cooling M.P. and Boulton A.J., 1993. Aspects of the hyporheic zone below the terminus of a South Australian arid-zone stream. Aust. J. Mar. Freshwater Res., 44, 411–426. [Google Scholar]
  • Cornut J., Elger A., Lambrigot D., Marmonier P. and Chauvet E., 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biol., 55, 2541–2556. [Google Scholar]
  • Corti R., Datry T., Drummond L. and Learned S., 2011. Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in temporary river. Aquat. Sci., 73, 537–550. [CrossRef] [Google Scholar]
  • Crenshaw C.L., Valett H.M. and Tank J.L., 2002. Effects of coarse particulate organic matter on fungal biomass and invertebrate density in the subsurface of a head- water stream. J. N. Am. Benthol. Soc., 21, 28–42. [Google Scholar]
  • Creuzé des Châtelliers M. and Reygrobellet J.L., 1990. Interactions between geomorphological processes, benthic and hyporheic communities: first results on a by-passed canal of the French upper Rhône river. Regul. Riv., 5, 139–158. [Google Scholar]
  • Dahm C.N. and Valett H.M., 1996. Hyporheic zones. In: Methods in Stream Ecology, A. H. F. R. a. L. G., Academic Press, San Diego, California, 53–74. [Google Scholar]
  • Dahm C.N., Trotter E.H. and Sedell J.R., 1987. Role of anaerobic zones and processes in stream ecosystem productivity. In: Averett R.C. and McKnight D.M. (eds.), Chemical Quality of Water and the Hydrologic Cycle, Lewis Publishers, Chelsea, 157–178. [Google Scholar]
  • Dahm C.N., Grimm N.B., Marmonier P., Valett H.M. and Vervier P., 1998. Nutrient Dynamics at the interface between surface waters and ground waters. Freshwater Biol., 40, 427–451. [Google Scholar]
  • Danielopol D.L., 1989. Groundwater fauna associated to riverine aquifers. J. N. Am. Benthol. Soc., 8, 18–35. [Google Scholar]
  • Danielopol D.L., 2000. Biodiversity in groundwater: a large-scale view. Trends Ecol. Evol., 15, 223–224. [CrossRef] [PubMed] [Google Scholar]
  • Datry T. and Larned S.T., 2008. River flow controls ecological processes and invertebrate assemblages in subsurface flowpaths of an ephemeral river reach. Can. J. Fish. Aquat. Sci., 65, 1532–1544. [Google Scholar]
  • Datry T., Corti R., Claret C. and Philippe M., 2011. Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the “drying memory”. Aquat. Sci., 73, 471–483. [CrossRef] [Google Scholar]
  • Datry T., Malard F., Niedereitter R. and Gibert J., 2003. Video logging for examining biogenic structures in deep heterogeneous subsurface sediments. C. R. Acad. Sci. Biol., 326, 589–597. [Google Scholar]
  • Datry T., Larned S.T. and Scarsbrook M.R., 2007. Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface-subsurface exchange. Freshwater Biol., 52, 1452–1462. [Google Scholar]
  • Descloux S., Datry T., Philippe M. and Marmonier P., 2010. Comparison of different techniques to assess surface and subsurface streambed colmation with fine sediments. Int. Rev. Hydrobiol, 95, 520–540. [CrossRef] [Google Scholar]
  • Doering M., Uehlinger U., Rotach A., Schläpfer D. and Tockner K., 2006. Large-scale expansion and contraction dynamics along an unconstrained alpine alluvial corridor (Tagliamento River, Northeast Italy). Earth Surf. Process. Landforms, 32, 1693–1704. [CrossRef] [Google Scholar]
  • Dole-Olivier M.J., Marmonier P. and Beffy J.L., 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium?Freshwat. Biol., 37, 257–276. [Google Scholar]
  • Dukes J.S. and Mooney H.A., 1999. Does global change increase the success of biological invaders?Trends Ecol. Evol., 14, 135–139. [CrossRef] [PubMed] [Google Scholar]
  • Engstrom P., Penton C.R. and Devol A.H., 2009. Anaerobic ammonium oxidation in deep-sea sediments off the Washington margin. Limnol. Oceanogr., 54, 1643–1652. [Google Scholar]
  • European Community, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. [Google Scholar]
  • Fauvet G., Claret C. and Marmonier P., 2001. Influence of benthic and interstitial processes on nutrient changes along a regulated reach of a large river (Rhône River, France). Hydrobiologia, 445, 121–131. [CrossRef] [Google Scholar]
  • Fellows C.S., Valett H.M. and Dahm C.N., 2001. Whole-stream metabolism in two montane streams: Contribution of the hyporheic zone. Limnol. Oceanogr., 46, 523–531. [CrossRef] [Google Scholar]
  • Feris K.P., Ramsey P.W., Frazar C., Rillig M.C., Gannon J.E. and Holben W.E., 2003. Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone Rivers of the western United States. Microb. Ecol., 46, 200–215. [Google Scholar]
  • Feris K.P., Ramsey P.W., Frazar C., Rillig M.C., Moore J.N., Gannon J.E. and Holben W.E., 2004. Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl. Environ. Microbiol., 70, 2323–2331. [Google Scholar]
  • Findlay S. and Sobczak W.V., 1996. Variability in removal of dissolved organic carbon in hyporheic sediments. J. N. Am. Benthol. Soc., 15, 35–41. [Google Scholar]
  • Findlay S., Strayer D., Goumbala C. and Gould K., 1993. Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol. Oceanogr., 38, 1493–1499. [Google Scholar]
  • Fisher S.G., Grimm N.B., Marti E., Holmes R.M. and Jones J.B., 1998. Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems, 1, 19–34. [CrossRef] [Google Scholar]
  • Fischer H., Sukhodolov A., Wilczek S. and Engelhardt C., 2003. Effects of flow dynamics and sediment movement on microbial activity in a lowland river. River Res. Appl., 19, 473–482. [Google Scholar]
  • Fischer H., Kloep F., Wilzcek S. and Pusch M.T., 2005. A river's liver – microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry, 76, 349–371. [CrossRef] [Google Scholar]
  • Fowler R.T. and Scarsbrook M.R., 2002. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers. N. Z. J. Mar. Freshwater Res., 36, 471–482. [Google Scholar]
  • Gaudes A., Artigas J. and Munoz I., 2010. Species traits and resilience of floods and drought in a Mediterranean stream. Mar. Freshwater Res., 61, 1336–1347. [Google Scholar]
  • Gerino M., Frignani M., Mugnai C., Bellucci L.G., Prevedelli D., Valentini A., Castelli A., Delmotte S. and Sauvage S., 2007. Bioturbation in the Venice lagoon: rates and relationship to organisms. Acta Oecol., 32, 14–25. [Google Scholar]
  • Gessner M.O., Chauvet E. and Dobson M., 1999. A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384. [CrossRef] [Google Scholar]
  • Gibert J., Ginet R., Mathieu J. and Reygrobellet J.L., 1981. Structure et fonctionnement des écosystèmes du Haut-Rhône français. IX – Analyse des peuplements de deux stations phréatiques alimentant des bras morts. Int. J. Speleol., 11, 141–158. [Google Scholar]
  • Gibert J., Dole-Olivier M.J., Marmonier P. and Vervier P. 1990. Surface water-Groundwater ecotones. In: Naiman R.J. and Décamps H. (eds.), Ecology and Management of Aquatic-Terrestrial Ecotones, Partenon Publications, London, 199–225. [Google Scholar]
  • Gilbert F., Bonin P. and Stora G., 1995. Effect of bioturbation on denitrification in a marine sediment from the West Mediterranean littoral. Hydrobiologia, 304, 49–58. [Google Scholar]
  • Gilbert F., Stora G. and Bonin P., 1998. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experimental approach. Mar. Ecol. Prog. Ser., 163, 99–107. [Google Scholar]
  • Gilbert F., Hulth S. and Aller R.C., 2003. The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: an experimental and model approach. J. Mar. Res., 61, 101–125. [Google Scholar]
  • Gooseff M.N., Anderson J.K., Wondzell S.M., LaNier J. and Haggerty R., 2006. A modelling study of hyporheic exchange pattern and the sequence size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrol. Proc., 20, 2443–2457. [Google Scholar]
  • Graça M.A., 2001. The Role of Invertebrates on Leaf Litter Decomposition in Streams – a Review. Int. Rev. Hydrobiol., 86, 383–393. [Google Scholar]
  • Greenwood R., Mills G.A. and Roig B., 2007. Introduction to emerging tools and their use in water monitoring. Trends Anal. Chem., 26, 263–267. [Google Scholar]
  • Griebler C. and Lueders T., 2009. Towards a conceptual understanding of microbial biodiversity in groundwater ecosystems. Freshwater Biol., 54, 649–677. [Google Scholar]
  • Grimm N.B. and Fisher S.G., 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219–228. [CrossRef] [Google Scholar]
  • Gurevitch J. and Padilla D.K., 2004. Are invasions a major cause of extinctions? Trends Ecol. Evol., 19, 470–474. [Google Scholar]
  • Hakenkamp C. and Morin A., 2000. The importance of meiofauna to lotic ecosystem functioning. Freshwater Biol., 44, 165–175. [Google Scholar]
  • Hancock P.J., Boulton A.J. and Humphreys W.F., 2005. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeol. J., 13, 98–111. [Google Scholar]
  • Harvey B.N., Johnson M.L., Kiernan J.D. and Green P.G., 2011. Net dissolved inorganic nitrogen production in hyporheic mesocosms with contrasting sediment size distributions. Hydrobiologia, 658, 343–352. [CrossRef] [Google Scholar]
  • Heffernan J.B., Sponseller R.A. and Fisher S.G., 2008. Consequences of a biogeomorphic regime shift for the hyporheic zone of a Sonoran Desert stream. Freshwater Biol., 53, 1954–1968. [Google Scholar]
  • Hendricks S.P., 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. J. N. Am. Benthol. Soc., 12, 70–78. [Google Scholar]
  • Hendricks S.P. and White D.S., 1991. Physicochemical patterns within a hyporheic zone of a Northen Michigan River, with comments on surface water patterns. Can. J. Fish. Aquat. Sci., 48, 1645–1654. [Google Scholar]
  • Hester E.T. and Doyle M.W., 2008. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resour. Res., 44, W03417. [Google Scholar]
  • Hinkle S.R., Duff J.H., Triska F.J., Laenen A., Gates E.B., Bencala K.E., Wentz D.A. and Silva S.R., 2001. Linking hyporheic flow and nitrogen cycling near the Willametter River – a large river in Oregon, USA. J. Hydrol., 244, 157–180. [Google Scholar]
  • Iribar A., Sánchez-Pérez J.M., Lyautey E. and Garabétian F., 2008. Differentiated free-living and sediment-attached bacterial community structure inside and outside denitrification hotspots in the river-groundwater interface. Hydrobiologia, 598, 109–121. [CrossRef] [Google Scholar]
  • Jetten M.S.M., Strous M., Van der Pas-Schoonen K.T., Schalk J., Van Dongen U.G.J.M., Van der Graaf A.A., Logemann S., Muyzer G., Van Loosdrecht M.C.M. and Kuenen J.G., 1998. The anaerobic oxidation of ammonium. FEMS Microbiol. Rev., 22, S.421–437. [Google Scholar]
  • Jones J.B. and Holmes R.M., 1996. Surface-subsurface interactions in stream ecosystems. Trends Ecol. Evol., 11, 239–242. [Google Scholar]
  • Kasahara T., Datry T., Mutz M. and Boulton A., 2009. Restoration of stream-groundwater linkages in streams and rivers. Mar. Freshwater Res., 60, 976–981. [Google Scholar]
  • Kirchner J.W., Feng X.H., Neal C. and Robson A.J., 2004. The fine structure of water-quality dynamics: the (high-frequency) wave of the future. Hydrol. Process., 18, 1353–1359. [Google Scholar]
  • Kjellin J., Hallin S. and Worman A., 2007. Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure. Water Res., 41, 4710–4720. [Google Scholar]
  • Krause S., Hannah D.M., Fleckenstein J.H., Heppell C.M., Picku R., Pinay G., Robertson A.L. and Wood P.J., 2011. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4, 481–499. [CrossRef] [Google Scholar]
  • Kristensen E., Jensen M.H. and Andersen T.K., 1985. The impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. J. Exp. Mar. Biol. Ecol., 85, 75–91. [Google Scholar]
  • Labat F., Piscart C., Fontan B., 2011. First records, pathways and distributions of four new Ponto-Caspian amphipods in France. Limnologica, 41, 290–295. [CrossRef] [Google Scholar]
  • Lafont M., Vivier A., Nogueira S., Namour P. and Breil P., 2006. Surface and hyporheic oligochaete assemblages in a French suburban stream. Hydrobiologia, 564, 183–193. [CrossRef] [Google Scholar]
  • Landmeyer J.E., Bradley P.M., Trego D.A., Hale K.G. and Haas J.E., 2010. MTBE, TBA, and TAME Attenuation in Diverse Hyporheic Zones. Ground Water, 48, 30–41. [CrossRef] [PubMed] [Google Scholar]
  • Larned S.T., Hicks M.D., Schmidt J., Davey A.J.H., Dey K., Scarsbrook M., Arscott D.B. and Woods R.A., 2008. The Selwyn River of New Zealand: a benchmark system for alluvial plain rivers. River Res. Appl., 24, 1–21. [Google Scholar]
  • Lecerf A. and Richardson J.S., 2010. Biodiversity-ecosystem function research: Insights gained from streams. River Res. Appl., 26, 45–54. [Google Scholar]
  • Leduc D., 2009. Description of Oncholaimus moanae sp. nov. (Nematoda: Oncholaimidae), with notes on feeding ecology based on isotopic and fatty acid composition. J. Mar. Biol. Assoc. UK, 89, 337–344. [CrossRef] [Google Scholar]
  • Lefebvre S., Marmonier P. and Pinay G., 2004. Stream regulation and Nitrogen dynamics in sediment interstices: comparison of natural and straightened sectors of a third-order stream. River Res. Appl., 20, 499–512. [Google Scholar]
  • Lefebvre S., Marmonier P. and Peiry J.L., 2006. Nitrogen dynamics in rural streams: differences between geomorphologic units. Int. J. Limnol., 42, 43–52. [Google Scholar]
  • Lefebvre S., Clement J.C., Pinay G., Thenail C., Durand P. and Marmonier P., 2007. 15N-Nitrate signature in streams: effects of land-cover and agriculture practices. Ecol. Appl., 17, 2333–2346. [Google Scholar]
  • Lefebvre S., Marmonier P., Pinay G., Bour O., Aquilina L. and Baudry J., 2005. Nutrient dynamics in interstitial habitats of low-order rural streams with different bedrock geology. Arch. Hydrobiol., 164, 169–191. [Google Scholar]
  • Lewis D.B., Grimm N.B., Harms T.K. and Schade J.D., 2007. Subsystems, flowpaths, and the spatial variability of nitrogen in fluvial ecosystem. Landscape Ecol., 22, 911–924. [Google Scholar]
  • Lopez-Garcia P., Gaill F. and Moreira D., 2002. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ. Microbiol., 4, 204–215. [Google Scholar]
  • Lowell J.L., Gordon N., Engstrom D., Stanford J.A., Holben W.E. and Gannon J.E., 2009. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path. Microb. Ecol., 58, 611–620. [Google Scholar]
  • Maazouzi C., Piscart C., Pihan J.C. and Masson G., 2009. Effect of habitat-related resources on fatty acid composition and body weight of the invasive Dikerogammarus villosus in an artificial reservoir. Fundam. Appl. Limnol., 175, 327–338. [Google Scholar]
  • Malard F., Gallassi D., Lafont M., Dolédec S. and Ward J.V., 2003. Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biol., 48, 1709–1725. [Google Scholar]
  • Malard F., Uehlinger U., Zah R. and Tockner K., 2006. Flood-pulse and riverscape dynamics in a braided glacial river. Ecology, 87, 704–716. [CrossRef] [PubMed] [Google Scholar]
  • Malcolm I.A., Soulsby C. and Youngson A.F., 2006. High frequency logging technologies reveal state dependant hyporheic process dynamics: implications for hydroecological studies. Hydrol. Process., 20, 615–622. [Google Scholar]
  • Marmonier P., Delettre Y., Lefebvre S., Guyon J. and Boulton A.J., 2004. A simple technique using wooden stakes to estimate vertical patterns of interstitial oxygenation in the beds of rivers. Arch. Hydrobiol., 160, 133–143. [Google Scholar]
  • Marmonier P., Piscart C., Sarriquet P.E., Azam D. and Chauvet E., 2010. Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone. Hydrobiologia, 641, 203–214. [CrossRef] [Google Scholar]
  • Massa F., Baglinière J.L., Prunet P. and Grimaldi C., 2000. Survie embryo-larvaire de la truite (Salmo trutta) et conditions chimiques dans la frayère. Cybium, 24 (Suppl.), 129–140. [Google Scholar]
  • Matthaei C.D., Weller F., Kelly D.W. and Townsend C.R., 2006. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand. Freshwater Biol., 51, 2154–2172. [Google Scholar]
  • McDermott M.J., Robertson A.L., Shaw P.J. and Milner A.M., 2010. The hyporheic assemblage of a recently formed stream following deglaciation in Glacier Bay, Alaska. Can. J. Fish. Aquat. Sci., 67, 304–313. [Google Scholar]
  • Mermillod-Blondin F., Creuzé des Châtelliers M., Gerino M. and Gaudet J.P., 2000. Testing the effect of Limnodrilus sp. (Oligochaeta, Tubificidae) on organic matter and nutrient processing in the hyporheic zone: a microcosm method. Arch. Hydrobiol., 149, 467–487. [Google Scholar]
  • Mermillod-Blondin F., Gaudet J.P., Gerino M. and Creuzé des Châtelliers M., 2003. Influence of macroinvertebrates on physico-chemical and microbial processes in the hyporheic sediments. Hydrol. Process., 17, 779–794. [Google Scholar]
  • Mermillod-Blondin F., Nogaro G., Datry T., Malard F. and Gibert J., 2005. Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ. Pollut., 134, 57–69. [CrossRef] [PubMed] [Google Scholar]
  • Mermillod-Blondin F., Nogaro G., Vallier F. and Gibert J., 2008. Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems. Chemosphere, 72, 213–223. [CrossRef] [PubMed] [Google Scholar]
  • Meyer J.L., Sale M.J., Mulholland P.J. and LeRoy Poff N., 1999. Impacts of climate change on aquatic ecosystem functioning and health. J. Am. Water Res. Assoc., 35, 1373–1386. [Google Scholar]
  • Monard C., Vandenkoornhuyse P., Le Bot B., Binet F., 2011. Relationship between bacterial diversity and function under biotic control: the soil pesticide degraders as a case study. ISME J., 5, 1048–1056. [CrossRef] [PubMed] [Google Scholar]
  • Morrice J.A., Valett H.M., Dahm C.N. and Campana M.E., 1997. Alluvial characteristics, groundwater–surface water exchange and hydrologic retention in headwater streams. Hydrol. Process., 11, 253–267. [Google Scholar]
  • Mulholland P.J., Marzolf E.R., Webster J.R., Hart D.R. and Hendricks S.P., 1997. Evidence of hyporheic retention of phosphorus in Walker Branch. Limnol. Oceanogr., 42, 443–451. [Google Scholar]
  • Nalepa T.F., Fanslow D.L. and Lang G.A., 2009. Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugenis. Freshwater Biol., 54, 466–479. [Google Scholar]
  • Navel S., Mermillod-Blondin F., Montuelle B., Chauvet E., Simon L., Piscart C. and Marmonier P., 2010. Interactions between fauna and sediment characteristics control plant matter breakdown in river sediments. Freshwater Biol., 55, 753–766. [Google Scholar]
  • Navel S., Simon L., Lecuyer C., Fourel F. and Mermillod-Blondin F., 2011. The shredding activity of gammarids facilitates the processing of organic matter by the subterranean amphipod Niphargus rhenorhodanensis. Freshwater Biol., 56, 481–49. [Google Scholar]
  • Navel S., Mermillod-Blondin F., Montuelle B., Chauvet E., Simon L. and Marmonier P., 2011. Water-sediment exchanges control microbial processes associated with leaf litter degradation in the hyporheic zone: a microcosm study., 61, 968–79. [Google Scholar]
  • Nicholls J.C. and Trimmer M., 2009. Widespread occurrence of the anammox reaction in estuarine sediments. Aquat. Microbiol. Ecol., 55, 105–113. [Google Scholar]
  • Nikolcheva L.G., Cockshutt A.M. and Barlocher F., 2003. Determining diversity of freshwater fungi on decaying leaves: Comparison of traditional and molecular approaches. Appl. Environ. Microbiol., 69, 2548–2554. [Google Scholar]
  • Nogaro G. and Mermillod-Blondin F., 2009. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems. Environ. Sci. Technol., 43, 3632–3638. [Google Scholar]
  • Nogaro G., Mermillod-Blondin F., François-Carcaillet F., Gaudet J.P., Lafont M. and Gibert J., 2006. Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using filtration sediment columns. Freshwater Biol., 51, 1458–1473. [Google Scholar]
  • Nogaro G., Mermillod-Blondin F., Montuelle B., Boisson J.C., Lafont M., Volat B. and Gibert J., 2007. Do tubificid worms influence organic matter processing and fate of pollutants in stormwater sediments deposited at the surface of infiltration systems?Chemosphere, 70, 315–328. [CrossRef] [PubMed] [Google Scholar]
  • Nogaro G., Mermillod-Blondin F., Valett H.M., François-Carcaillet F., Gaudet J.P., Lafont M. and Gibert J., 2009. Ecosystem engineering at the sediment-water interface: bioturbation and consumer-substrate interaction. Oecologia, 161, 125–138. [CrossRef] [PubMed] [Google Scholar]
  • Nogaro G., Datry T., Mermillod-Blondin F. and Montuelle B., 2010. Influence of streambed sediment clogging on microbial processes in the hyporheic zone. Freshwater Biol., 55, 1288–1302. [Google Scholar]
  • Ojanguren A.F. and Braña F., 2003. Thermal dependence of embryonic growth and development in brown trout. J. Fish Biol., 62, 580–590. [Google Scholar]
  • Orghidan T., 1959. Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Arch. Hydrobiol., 55, 392–414. [Google Scholar]
  • Orghidan T., 2010. A new habitat of subsurface waters: the hyporheic biotope. Fundam. Appl. Limnol., 176, 291–302. [CrossRef] [Google Scholar]
  • Peyrard D., Sauvage S., Vervier P., Sánchez-Pérez J.M. and Quintard M., 2008. A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river. Hydrol. Process., 22, 4257–4273. [Google Scholar]
  • Pinay G. and Décamps H., 1988. The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface water: a conceptual model. Regul. Riv., 2, 507–516. [Google Scholar]
  • Piscart C., Moreteau J.C. and Beisel J.N., 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia, 551, 227–236. [CrossRef] [Google Scholar]
  • Piscart C., Genoel R., Dolédec S., Chauvet E. and Marmonier P., 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environ. Pollut., 157, 1011–1018. [Google Scholar]
  • Piscart C., Bergerot B., Lafaille P. and Marmonier P., 2010. Are amphipod invaders a threat to regional biodiversity? Biol. Invasions, 12, 853–863. [CrossRef] [Google Scholar]
  • Piscart C., Roussel J.M., Dick J.T.A., Grosbois G. and Marmonier P., 2011. Effects of coexistence on the habitat use and trophic ecology of interacting native and invasive amphipods. Freshwater Biol., 56, 325–334. [Google Scholar]
  • Poole G.C., Stanford J.A., Running S.W., Frissell C.A., Woessner W.W. and Ellis B.K., 2004. A patch hierarchy approach to modeling surface and subsurface hydrology in complex flood-plain environments. Earth Surf. Process. Landforces, 29, 1259–1274. [CrossRef] [Google Scholar]
  • Poole G.C., O'Daniel S.J., Jones K.L., Woessner W.W., Bernhardt E.S., Helton A.M., Stanford J.A., Boer B.R. and Beechie T.J., 2008. Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Res. Appl., 24, 1018–1031. [Google Scholar]
  • Puig M.A., Sabater F. and Malo J., 1990. Benthic and hyporheic faunas of mayflies and stoneflies in the Ter River Basin (NE-Spain). In: Campbell I.C. (ed.), Mayflies and Stoneflies: Life Histories and Biology, Kluwer Academic Publishers, Dordrecht, 255–258. [CrossRef] [Google Scholar]
  • Riss H.W., Meyer E.I. and Niepagenkemper O., 2008. A novel and robust device for repeated small-scale oxygen measurement in riverine sediments implications for advanced environmental surveys. Limnol. Oceanogr. Met., 6, 200–207. [Google Scholar]
  • Robertson A.L. and Wood P.J., 2010. Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundam. Appl. Limnol., 176, 279–289. [Google Scholar]
  • Romani A.M. and Sabater S., 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology, 82, 3232–3245. [CrossRef] [Google Scholar]
  • Romani A.M., Fischer H., Mille-Lindblom C. and Tranvik L.J., 2006. Interactions of bacteria and fungi on decomposing litter: Differential extracellular enzyme activities. Ecology, 87, 2559–2569. [CrossRef] [PubMed] [Google Scholar]
  • Ryder D.S., 2009. Responses of epixylic biofilm metabolism to water level variability in a regulated floodplain river. J. N. Am. J. Benthol. Soc., 23, 214–223. [Google Scholar]
  • Sabater S., Butturini A., Clement J.C., Burt T., Dowrick D., Hesfting M., Maitre V., Pinay G., Postolache C., Rzepecki M. and Sabater F.N., 2003. Nitrogen removal by riparian buffers under various N loads along a European climatic gradient: patterns and factors of variation. Ecosystems, 6, 20–30. [Google Scholar]
  • Sánchez-Pérez J.M., Bouey C., Sauvage S., Teissier S., Antigüedad I. and Vervier P., 2003a. A standardized method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands. Hydrol. Earth Sci. Syst., 7, 87–96. [Google Scholar]
  • Sánchez-Pérez J.M., Vervier P., Garabétian F., Sauvage S., Loubet M., Rols J.L., Bariac T. and Weng P., 2003b. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, Southwester France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrol. Earth Sci. Syst., 7, 97–107. [Google Scholar]
  • Sánchez-Pérez J.M., Gerino M., Sauvage S., Dumas P., Maneux E., Julien F., Winterton P. and Vervier P., 2009. Effects of nutrient pollution on in-stream nutrient retention in an agricultural watershed. Ann. Limnol. ‐ Int. J. Limnol., 45, 79–92. [Google Scholar]
  • Schmid P.E. and Schmid-Araya J.M., 2010. Scale-dependent relations between bacteria, organic matter and invertebrates in a headwater stream. Fundam. Appl. Limnol., 176, 365–375. [Google Scholar]
  • Sebilo M., Billen G., Grably M. and Mariotti A., 2003. Isotopic composition of nitrate–nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine river system. Biogeochemistry, 63, 35–51. [CrossRef] [Google Scholar]
  • Sinsabaugh R.L., Antibus R.K., Linkins A.E., McClaugherty C.A., Rayburn L., Repert D. and Weiland T., 1993. Wood decomposition – nitrogen and phosphorous dynamics in relation to extracellular enzyme activity. Ecology, 74, 1596–1593. [Google Scholar]
  • Stanford J.A. and Ward J.V., 1988. The hyporheic habitat of river ecosystems. Nature, 335, 64–66. [CrossRef] [Google Scholar]
  • Strayer D.L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwat. Biol., 55 (Suppl. 1), 152–174. [Google Scholar]
  • Taleb A., Belaidi N., Sanchez-Perez J.M., Vervier P., Sauvage S. and Gagneur J., 2008. The role of the hyporheic zone in the nitrogen dynamics within a semi-arid gravel bed stream located downstream of a heavily polluted reservoir (Tafna wadi, Algeria). River Res. Appl., 24, 183–196. [Google Scholar]
  • Thompson R.C., Moschella P.S., Jenkins S.R., Norton T.A. and Hawkins S.J., 2005. Differences in photosynthetic marine biofilm between sheltered and moderately exposed rocky shores. Mar. Ecol. Prog. Ser., 296, 53–63. [Google Scholar]
  • Tockner K., Ward J.V., Edwards P.J. and Kollmann J., 2002. Riverine landscapes: an introduction. Freshwater Biol., 47, 497–500. [Google Scholar]
  • Tonina D. and Buffington J.M., 2009. Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental Effects. Geogr. Compass, 3, 1063–1086. [Google Scholar]
  • Tringe S.G., von Mering C., Kobayashi A., Salamov A.A., Chen K., Chang H.W., Podar M., Short J.M., Mathur E.J., Detter, J.C., Bork P., Hugenholtz P. and Rubin E.M., 2005. Comparative metagenomics of microbial communities. Science, 308, 554–557. [CrossRef] [PubMed] [Google Scholar]
  • Valett H.M., Morrice J.A., Dahm C.N. and Campana M.E., 1996. Parent lithology, groundwater-surface water exchange and nitrate retention in headwater streams. Limnol. Oceanogr., 41, 333–345. [Google Scholar]
  • Vandenkoornhuyse P., Dufresne A., Quaiser A., Gouesbet G., Binet F., Francez A.J., Mahé S., Bormans M., Lagadeuc Y. and Couée I., 2010. Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and post-genomics. Ecol. Lett., 13, 776–791. [Google Scholar]
  • Vervier P., Bonvallet-Garey S., Sauvage S., Maurice V. and Sánchez-Pérez J.M., 2009. Influence of the hyporheic zone on the phosphorus dynamics of a large gravel bed river, Garonne river, France. Hydrol. Process., 23, 1801–1812. [Google Scholar]
  • Ward J.V. and Voelz N.J., 1994. Groundwater fauna of the South Platte River system, Colorado. In: Gilbert J., Danielopol D.L. and Stanford J.A. (eds.), Groundwater Ecology, Academic Press, San Diego, 391–423. [Google Scholar]
  • Weng P., Sánchez-Pérez J.M., Sauvage S., Vervier P. and Giraud F., 2003. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: Hydrological modelling of a large floodplain (Garonne River, France). Hydrol. Process., 17, 2375–2393. [Google Scholar]
  • Werner S. and Rothhaupt K.O., 2007. Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. J. N. Am. Benthol. Soc., 26, 673–680. [Google Scholar]
  • Williams D.D. and Hynes H.B.N., 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biol., 4, 233–256. [CrossRef] [Google Scholar]
  • Williams D.D. and Hynes H.B.N., 1976. The recolonization mechanisms of stream benthos. Oikos, 27, 265–272. [CrossRef] [Google Scholar]
  • Williams J.B., Mills G., Bamhurst D., Southern S. and Garvin N., 2009. Transport and degradation of a trichloroethylene plume within a stream hyporheic zone. Proc. 2007 Nat. Conf. Environ. Sci. Tech., 4, 189–194. [Google Scholar]
  • Woessner W.W., 2000. Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water, 38, 423–429. [CrossRef] [Google Scholar]
  • Wood P.J., Gunn J., Smith H. and Abas-Kutty A., 2005. Flow permanence and macroinvertebrate community diversity within groundwater dominated headwater streams and springs. Hydrobiologia, 545, 55–64. [CrossRef] [Google Scholar]
  • Wood P.J., Boulton A.J., Little S. and Stubbington R., 2010. Is the hyporheic zone a refugium for macroinvertebrates during severe low flow conditions?Fundam. Appl. Limnol., 176, 377–390. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.