Free Access
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 2, 2012
Page(s) 241 - 251
Published online 19 July 2012
  • Ailstock M.S. and Center E., 2000. Adaptive strategies of common reed Phragmites australis. Proceedings: The Role of Phragmites in the Mid-Atlantic Region. April 17, 1–7. [Google Scholar]
  • Amsberry L., Baker M.A., Ewanchuk P.J. and Bertness M.D., 2000. Clonal integration and the expansion of Phragmites australis. Ecol. Appl., 10, 1110–1118. [Google Scholar]
  • Armstrong J. and Armstrong W., 2001. An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquat. Bot., 69, 251–268. [Google Scholar]
  • Baier T. and Neuwirth E., 2007. Excel :: COM :: R. Comput. Stat., 22, 91–108. [CrossRef] [MathSciNet] [Google Scholar]
  • Bailey-Serres, J., Voesenek, L., 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol., 59, 313–339. [CrossRef] [PubMed] [Google Scholar]
  • Bart D. and Hartman J.M., 2000. Environmental determinants of Phragmites australis expansion in a New Jersey salt marsh: an experimental approach. Oikos, 89, 59–69. [CrossRef] [Google Scholar]
  • Bellavance M.E. and Brisson J. 2010. Spatial dynamics and morphological plasticity of common reed (Phragmites australis) and cattails (Typha sp.) in freshwater marshes and roadside ditches. Aquat. Bot., 93, 129–134. [CrossRef] [Google Scholar]
  • Bendefy L. and Nagy V., 1969. A Balaton évszázados partvonalváltozási. (Changes of the shoreline of Lake Balaon over the centuries) (in Hung.) Műszaki Könyvkiadó. [Google Scholar]
  • Brix H., 1999. The European research project on reed die-back and progression (EUREED). Limnologica, 29, 5–10. [CrossRef] [Google Scholar]
  • Buzás I., 1988. Soil-and Agrochemical Methods Manual. Parts 1–2. Mezőgazd. K. [Google Scholar]
  • Clevering O.A., 1998. An investigation into the effects of nitrogen on growth and morphology of stable and die-back populations of Phragmites australis. Aquat. Bot., 60, 11–25. [Google Scholar]
  • Engloner, A.I., 2009. Structure, growth dynamics and biomass of reed (Phragmites australis) – A review. Flora., 204, 331–346. [CrossRef] [Google Scholar]
  • Engloner A.I. and Major Á., 2011. Clonal diversity of Phragmites australis propagating along water depth gradient. Aquat. Bot., 94, 172–176. [CrossRef] [Google Scholar]
  • Engloner A.I., Major Á. and Podani J., 2010. Clonal diversity along a water depth gradient in a declining reed stand as detected by three different genetic methods. Aquat. Bot., 92, 1–8. [Google Scholar]
  • Engloner A.I. and Papp M., 2006. Vertical differences in Phragmites australis culm anatomy along a water depth gradient. Aquat. Bot., 85, 137–146. [Google Scholar]
  • Hansen D.L., Lambertini C., Jampeetong A. and Brix, H., 2007. Clone-specific differences in Phragmites australis: Effects of ploidy level and geographic origin. Aquat. Bot., 86, 269–279. [Google Scholar]
  • Hara T., 1994. Growth and Competition in Clonal Plants-Persistence of Shoot Populations and Species Diversity. Folia Geobot Phytotx, 29, 181–201. [CrossRef] [Google Scholar]
  • Hara T., Van der Toorn J. and Mook J.H., 1993. Growth dynamics and size structure of shoots of Phragmites australis, a clonal plant. J. Ecol., 81, 47–60. [CrossRef] [Google Scholar]
  • Den Hartog C., Kvet J. and Sukopp H., 1989. Reed. A common species in decline. Aquat. Bot., 35, 1–4. [CrossRef] [Google Scholar]
  • Herodek S. and Tóth V.R., 2003. Factors affecting distribution of macrophytes in Lake Balaton. Research of Lake Balaton 2002. Hungarian Academy of Sciences, Budapest, pp. 85–92 (in Hungarian). [Google Scholar]
  • Herodek S. and Tóth V.R., 2004. Comparative study of healthy and die-back reed in Lake Balaton. Research of Lake Balaton 2003. Hungarian Academy of Sciences, Budapest pp. 64–72 (in Hungarian). [Google Scholar]
  • Hutchinson, G.E., 1975. A treatise on limnology: limnological botany. John Wiley & Sons. [Google Scholar]
  • Keddy, P., 2005. Putting the plants back into plant ecology: six pragmatic models for understanding and conserving plant diversity. Ann. of Bot., 96, 177. [CrossRef] [Google Scholar]
  • Keller, B.E.M., 2000. Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquat. Bot., 66, 195–208. [CrossRef] [Google Scholar]
  • Koppitz H., 1999. Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquat. Bot., 64, 209–221. [Google Scholar]
  • Koppitz, H., Kühl, H., 2000. To the importance of genetic diversity of Phragmites australisin the development of reed stands. Wet. Ecol. Man., 8, 403–414. [CrossRef] [Google Scholar]
  • Kovács M., Turcsányi G., Tuba Z., Wolcsanszky S.E., Vasarhelyi T., Dely-Draskovits A., Toth S., Koltay A., Kaszab L. and Szoke P., 1989. The decay of reed in Hungarian lakes. Symp. Biol. Hung, 38, 461–471. [Google Scholar]
  • Kroon H., 1993. Competition between shoots in stands of clonal plants. Plant Species Biol., 8, 85–94. [Google Scholar]
  • de Kroons, H., Hutchings, M.J., 1995. Morphological plasticity in clonal plants: the foraging concept reconsidered. J. Ecol., 83, 143–152. [CrossRef] [Google Scholar]
  • Kühl H., Koppitz H., Rolletschek H., Kohl J.-G., 1999. Clone specific differences in a Phragmites australis stand: I. Morphology, genetics and site description. Aquat. Bot., 64, 235–246. [CrossRef] [Google Scholar]
  • Makita A., 1996. Density regulation during the regeneration of two monocarpic bamboos: self-thinning or intraclonal regulation? J. Veg. Sci., 7, 281–288. [Google Scholar]
  • Neuhaus, D., Kühl, H., Kohl, J.G., Dörfel, P., Börner, T., 1993. Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting. Aquat. Bot., 45, 357–364. [CrossRef] [Google Scholar]
  • Oborny, B., Kun, Á., Czárán, T., Bokros, S., 2000. The effect of clonal integration on plant competition for mosaic habitat space. Ecology, 81, 3291–3304. [CrossRef] [Google Scholar]
  • Ostendorp W., 1989. “Die-back” of reeds in Europe – a critical review of literature. Aquat. Bot., 35, 5–26. [Google Scholar]
  • Paucá-Cománescu M., Clevering, O.A., Hanganu J., Gridin M., 1999. Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquat. Bot., 64, 223–234. [Google Scholar]
  • Pitelka L.F., Ashmun L.W., 1985. Physiology and Integration of Ramets in Clonal Plants Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, Connecticut, USA. [Google Scholar]
  • Santamaría L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol., 23, 137–154. [CrossRef] [Google Scholar]
  • Schwinning, S., Weiner, J., 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia, 113, 447–455. [CrossRef] [PubMed] [Google Scholar]
  • Stueffer, J., De Kroon, H., During, H., 1996. Exploitation of environmental Hetergeneity by Spatial Division of Labor in a Clonal Plant. Func. Ecol., 328–334. [CrossRef] [Google Scholar]
  • Tóth L., Szabó E. and Felföldy L., 1963. Standing crop measurement of Phragmites communis on the ice of Lake Balaton. Acta Bot. Acad. Sci. Hung., Budapest, 9, 151–159. [Google Scholar]
  • Virág Á., 1997. Past and Present of Lake Balaton. Egri Nyomda. (in Hungarian). [Google Scholar]
  • Vretare V., Weisner S.E.B., Strand J.A. and Granéli W., 2001. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquat. Bot., 69, 127–145. [Google Scholar]
  • Weiner, J., Solbrig, O.T., 1984. The meaning and measurement of size hierarchies in plant populations. Oecologia, 61, 334–336. [CrossRef] [PubMed] [Google Scholar]
  • Wetzel, P.R., van der Valk, A.G., 1998. Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecol., 179–190. [CrossRef] [Google Scholar]
  • Wilson, S.D., Keddy, P.A., 1986. Species competitive ability and position along a natural stress/disturbance gradient. Ecology, 1236–1242. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.