Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 2, 2012
Page(s) 161 - 175
DOI https://doi.org/10.1051/limn/2012005
Published online 03 May 2012
  • Akbulut N.E., 2004. The determination of relationship between zooplankton and abiotic factors using canonical correspondence analysis (CCA) in the Ova Stream (Ankara/Turkey). Acta Hydrochim. Hydrobiol., 32, 434–441. [CrossRef] [Google Scholar]
  • APHA, 1985. Standard Methods for the Examination of Water and Waste (12th edn,), American Public Health Association, New York, 1268 p. [Google Scholar]
  • Baranyi C., Hein T., Holarek C., Keckeis S. and Schiemer F., 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biol., 47, 473–482. [CrossRef] [Google Scholar]
  • Basu B.K. and Pick F.R., 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr., 41, 1572–1577. [CrossRef] [Google Scholar]
  • Basu B.K., Kalff J. and Pinel-Alloul B., 2000. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St. Lawrence River. Freshwater Biol., 45, 373–382. [CrossRef] [Google Scholar]
  • Bednarek A.T. and Hart D.D., 2005. Modifying dam operations to restore rivers: ecological responses to Tennessee River dam mitigation. Ecol. Appl., 15, 997–1008. [CrossRef] [Google Scholar]
  • Beklioglu M. and Jeppesen E., 1999. Behavioural response of plant-associated Eurycercus lamellatus (Ö.F. Müller) to different food sources and fish cues. Aquat. Ecol., 33, 167–173. [CrossRef] [Google Scholar]
  • Bogdan K.G. and Gilbert J.J., 1987. Quantitative comparison of food niches in some freshwater zooplankton. Oecologia, 72, 331–340. [CrossRef] [PubMed] [Google Scholar]
  • Breitig G. and von Tümpling W., 1982. Ausgewaehlte Methoden der Wasseruntersuchung, Band II. Biologische, mikrobiologische und toxikologische Methoden, VEB Gustav Fischer Verlag, Jena, 579 p. [Google Scholar]
  • Bukvić I., Kerovec M., Plenkovic A. and Mrakovcic M., 1998. Impact of silver and bighead carp (Cyprinidae) on plankton and water quality in fish ponds. Biologia, Bratislava, 53, 145–157. [Google Scholar]
  • Burger D.F., Hogg I.D. and Green J.D., 2002. Distribution and abundance of zooplankton in the Waikato River, New Zeland. Hydrobiologia, 479, 31–38. [CrossRef] [Google Scholar]
  • Burks R.L., Jeppesen E. and Lodge D.M., 2001a. Littoral zone structures as Daphnia refugia against fish predators. Limnol. Oceanogr., 46, 230–237. [CrossRef] [Google Scholar]
  • Burks R.L., Jeppesen E. and Lodge D.M., 2001b. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. J. N. Am. Benthol. Soc., 20, 615–628. [CrossRef] [Google Scholar]
  • Castro B.B., Antunes S.C., Pereira R., Soares A.M.V.M. and Gonçalves F., 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia, 543, 221–232. [CrossRef] [Google Scholar]
  • Cazzanelli M., Warming T.P. and Christoffersen K.S., 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia, 605, 113–122. [CrossRef] [Google Scholar]
  • Descy J.P., 1993. Phytoplankton composition and dynamics in the river Meuse (Belgium). Arch. Hydrobiol. Suppl., 78, 225–245. [Google Scholar]
  • Duggan I.C., Green J.D., Thompson K. and Shiel R.J., 2001. The influence of macrophytes on the spatial distribution of littoral rotifers. Freshwater Biol., 46, 777–786. [CrossRef] [Google Scholar]
  • Dumont H.J., van de Velde I. and Dumont S., 1975. The dry weight in a selection of Cladocera, Copepoda and rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19, 75–92. [CrossRef] [PubMed] [Google Scholar]
  • Einsle U., 1993. Crustacea, Copepoda, Calanoida und Cyclopoida, Gustav Fischer Verlag, Berlin, 208 p. [Google Scholar]
  • El-Shabrawy G.M. and Dumont H.J., 2003. Spatial and seasonal variation of the zooplankton in the coastal zone and main khors of Lake Nasser (Egypt). Hydrobiologia, 491, 119–132. [CrossRef] [Google Scholar]
  • Eriksson A.I., 2002. Can predation by net-spinning caddis larvae (Trichoptera: Hydropsyche siltalai) cause longitudinal changes in zooplankton species composition in lake-outlet streams?Arch. Hydrobiol., 153, 231–244. [Google Scholar]
  • Estlander S., Nurminen L., Olin M., Vinni M. and Horppila J., 2009. Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia, 620, 109–120. [CrossRef] [Google Scholar]
  • Fitzmaurice P., 1979. Selective predation on Cladocera by brown trout Salmo trutta L. J. Fish. Biol., 15, 521–525. [CrossRef] [Google Scholar]
  • Gliwicz Z.M. and Rykowska A., 1992. “Shore avoidance” in zooplankton: a predator-induced behaviour or predator-induced mortality? J. Plankton Res., 14, 1331–1342. [CrossRef] [Google Scholar]
  • González-Sagrario, M.A., Balseiro E., Ituarte R. and Spivak E., 2009. Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biol., 54, 1042–1053. [CrossRef] [Google Scholar]
  • Habdija I., Primc-Habdija B., Matoničkin R., Kučinić M., Radanović I., Miliša M., and Mihaljević Z., 2004. Current velocity and food supply as factors affecting the composition of macroinvertebrates in bryophyte habitats in Karst running water. Biologia, 59, 577–593. [Google Scholar]
  • Hart D.D. and Finelli C.M., 1999. Physical-biological coupling in streams: The pervasive effects of flow on benthic organisms. Annu. Rev. Ecol. Syst., 30, 363–95. [CrossRef] [Google Scholar]
  • Höll K., 1986. Wasser Untersuchung, Beurteilung, Aufbereitung, Chemie, Bakteriologie, Virologie, Biologie (7th edn.), Walter de Gruyter Verlag, Berlin, 393 p. [Google Scholar]
  • Holst H., Zimmermann H., Kausch H. and Koste W., 1998. Temporal and spatial dynamics of planktonic rotifers in the Elbe Estuary during spring. Estuar. Coast. Shelf Sci., 47, 261–273. [CrossRef] [Google Scholar]
  • Horppila J. and Nurminen L., 2005. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia, 545, 167–175. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Jeppesen E., Jensen J.P., Sondergaard M., Lauridsen T., Pedersen J.P. and Jensen L., 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342/343, 151–164. [CrossRef] [Google Scholar]
  • Jersabek C.D., Brancelj A., Stoch F. and Schabetsberger R., 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia, 453/454, 309–324. [CrossRef] [Google Scholar]
  • Kalff J., 2002. Limnology: Inland Water Ecosystems, Prentice Hall, Upper Saddle River, New Jersey, 592 p. [Google Scholar]
  • Kuczyńska-Kippen N., 2003. The distribution of rotifers (Rotifera) within a single Myriophyllum bed. Hydrobiologia, 506, 327–331. [CrossRef] [Google Scholar]
  • Kuczyńska-Kippen N., 2005. On body size and habitat selection in rotifers in a macrophyte-dominatedlake Budzyńskie, Poland. Aquat. Ecol., 39, 447–454. [CrossRef] [Google Scholar]
  • Kuczyńska-Kippen N. and Nagengast B., 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia, 559, 203–212. [CrossRef] [Google Scholar]
  • Lair N., 1980. The rotifer fauna of the River Loire (France), at the level of the nuclear power plants. Hydrobiologia, 73, 153–160. [CrossRef] [Google Scholar]
  • Lair N. and Reyes-Marchant P., 1997. The potamoplankton of the Middle Loire and the role of the “moving littoral” in downstream transfer of algae and rotifers. Hydrobiologia, 356, 33–52. [CrossRef] [Google Scholar]
  • Lau S.S.S. and Lane S.N., 2002. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance. Water Res., 36, 3593–3601. [CrossRef] [PubMed] [Google Scholar]
  • Lauridsen T. and Lodge D.M., 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr., 4, 794–798. [CrossRef] [Google Scholar]
  • Malard F., Turquin M.J. and Magniez G., 1997. Filter effect of karstic spring ecotones on the population structure of the hypogean amphipod Niphargus virei. In: Gilbert J., Mathieu J. and Fournier F. (eds.), Groundwater/Surface Water Ecotones: Biological and Hydrological Interactions and Management Options, Cambridge University Press, Cambridge, 40–50. [Google Scholar]
  • Malley D.F., Lawrence S.G., MacIver M.A. and Findlay W.J., 1989. Range of variation in estimates of dry weight for planktonic Crustacea and Rotifera from temperate North American lakes. Can. Tech. Rep. Fish. and Aquat. Sci., 1666, 1–49. [Google Scholar]
  • Margaritora F., 1983. Cladoceri (Crustacea: Cladocera). Guide per il Reconoscimiento delle Specie Animali delle Acque Interne 22, Consiglio Nazionale delle Ricerche, Roma, 167 p. [Google Scholar]
  • Meerhoff M., Fosalba C., Bruzzone C., Mazzeo N., Noordoven W. and Jeppesen E., 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biol., 51, 1320–1330. [CrossRef] [Google Scholar]
  • Meerhoff M., Iglesias C., De Mello F.T., Clemente J.M., Jensen E., Lauridsen T.L. and Jeppesen E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biol., 52, 1009–1021. [CrossRef] [Google Scholar]
  • Mrakovčić M., Mihaljević Z., Mustafić P., Zanella D., Ćaleta M. and Marčić Z., 2008. Ichthyofauna and macroinvertebrates in major stream of Papuk. Nature Park. Internal report, in Croatian, 80 p. [Google Scholar]
  • Nikolić T. and Topić J. 2005. Red Book of Vaskular Flora of Croatia. Ministry of Culture, The State Institute for Nature Protection, Zagreb, 693 p. [Google Scholar]
  • Nusch E.A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol., 14, 14–36. [Google Scholar]
  • Obertegger U., Borsato A. and Flaim G., 2010. Rotifer-crustacean interactions in a pseudokarstic lake: influence of hydrology. Aquat. Ecol., 44, 121–130. [CrossRef] [Google Scholar]
  • Obertegger U., Flaim G., Braioni M.G., Sommaruga R., Corradini F. and Borsato A., 2007. Water residence time as a driving force of zooplankton structure and succession. Aquat. Sci., 69, 575–583. [CrossRef] [Google Scholar]
  • Rennella A.M. and Quiros R., 2006. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia, 556, 181–191. [CrossRef] [Google Scholar]
  • Reynolds C.S., Carling P.A. and Beven K.J., 1991. Flow in river channels: new insights into hydraulic retention. Arch. Hydrobiol., 121, 171–179. [Google Scholar]
  • Sandlund O.T., 1982. The drift of zooplankton and microzoobenthos in the river Strandaelva, western Norway. Hydrobiologia, 94, 33–48. [CrossRef] [Google Scholar]
  • Schabetsberger R., Brozek S., Entachter K., Jersabek C. and Goldschmid A., 1996. Effects of temperature and body weight on gastric evacuation rates of Alpine newt (Triturus alpestris) larvae. Herpetol. J., 6, 75–81. [Google Scholar]
  • Schabetsberger R., Grill S., Hauser G. and Wukits P., 2006. Zooplankton successions in neighboring lakes with contrasting impacts of amphibian and fish predators. Int. Rev. Hydrobiol., 91, 197–221. [CrossRef] [Google Scholar]
  • Schiemer F., Keckeis H., Reckendorfer W. and Winkler G., 2001. The “inshore retention concept” and its significance for large rivers. Arch. Hydrobiol. Suppl., 135, 509–516. [Google Scholar]
  • Sertić Perić M., Miliša M., Primc-Habdija B. and Habdija I., 2011. Seasonal and fine-scale spatial patterns of drift and seston in a tufa-depositing barrage hydrosystem. Fund. Appl. Limnol., 178, 131–145. [CrossRef] [Google Scholar]
  • Sluss T.D., Cobbs G.A. and Thorp J.H., 2008. Impact of turbulence on riverine zooplankton: a Mesocosm experiment. Freshwater Biol., 53, 1999–2010. [CrossRef] [Google Scholar]
  • Špoljar M., Habdija I. and Primc-Habdija B., 2007a. Transport of seston in the karstic hydrosystem of the Plitvice Lakes (Croatia). Hydrobiologia, 579, 199–209. [CrossRef] [Google Scholar]
  • Špoljar M., Primc-Habdija B. and Habdija I., 2007b. The Influence of the lotic and lentic stretches on the zooseston flux through the Plitvice Lakes (Croatia). Ann. Limnol. ‐ Int. J. Lim., 43, 29–40. [CrossRef] [EDP Sciences] [Google Scholar]
  • Špoljar M., Dražina T., Ostojić A., Kralj Borojević K., Šargač J., Štafa D. and Meseljević M., 2008. Travertine biocenosys of Jankovac Waterfall, Papuk Nature Park. Internal report, in Croatian, 73 p. [Google Scholar]
  • Špoljar M., Dražina T., Ostojić A., Miliša M., Gligora Udovič M. and Štafa D., 2012. Bryophyte communities and seston in a karst stream (Jankovac Stream, Papuk Nature Park, Croatia). Ann. Limnol. ‐ Int. J. Lim., 48, 125–138. [CrossRef] [EDP Sciences] [Google Scholar]
  • Srdoč D., Horvatinčić N., Obelić B., Krajcar-Bronić I. and Sliepčević A., 1985. Calcite deposition processes in karst waters with special emphasis on the Plitvice lakes, Yugoslavia. Carsus Jugosl., 11, 101–204. [Google Scholar]
  • Stemberger R.S. and Gilbert J.J., 1985. Body size, food concentration and population growth in planktonic rotifers. Ecology, 66, 1151–1159. [CrossRef] [Google Scholar]
  • Suren A.M., 1991. Bryophytes as invertebrate habitat in two new Zeland alpine streams. Freshwater Biol., 26, 399–418. [CrossRef] [Google Scholar]
  • Vadebouncoeur Y., 1994. Longitudinal dynamics of seston concentration and composition in a lake outlet stream. J. N. Am. Benthol.Soc., 13, 181–189. [CrossRef] [Google Scholar]
  • Van de Meutter F., Cottenie K. and De Meester L., 2008. Exploring differences in macroinvertebrate communities from emergent, floating-leaved and submersed vegetation in shallow ponds. Fund. Appl. Limnol., 173, 47–57. [CrossRef] [Google Scholar]
  • Voigt M. and Koste W., 1978. Die Rädertiere Mitteleuropas, Gebrüder Borntraeger., Berlin, Stuttgart, 673 p. [Google Scholar]
  • Walz N. and Welker M., 1998. Plankton development in a rapidly flushed lake in the river Spree system (Neuendorfer See, Northeast Germany). J. Plankton Res., 20, 2071–2087. [CrossRef] [Google Scholar]
  • Węglenska T. and Ejsmont-Karabin J., 1994. The short and long term variability of the zooplankton structure in the Zagrzyński reservoir. Arch. Hydrobiol., 40, 117–126. [Google Scholar]
  • Welker M. and Walz N., 1998. Can mussels control the plankton in rivers? – A planktological approach applying a Lagrangian sampling strategy. Limnol. Oceanogr., 43, 753–762. [CrossRef] [Google Scholar]
  • Winder M., Bürgi H.R. and Spaak P., 2003. Mechanisms regulating zooplankton populations in a high-mountain lake. Freshwater Biol., 48, 795–809. [CrossRef] [Google Scholar]
  • Zimmermann-Timm H., Holst H. and Kausch H., 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia, 593, 49–58. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.