Free Access
Issue |
Ann. Limnol. - Int. J. Lim.
Volume 47, Number 4, 2011
|
|
---|---|---|
Page(s) | 355 - 362 | |
DOI | https://doi.org/10.1051/limn/2011047 | |
Published online | 01 December 2011 |
- Amemiya Y., Kato K., Okino T. and Nakayama O., 1990. Changes in the chemical composition of carbohydrates and proteins in surface water during a bloom of Microcystis in Lake Suwa. Ecol. Res., 5, 153–162. [CrossRef] [Google Scholar]
- Asai R., Horiguchi Y., Yoshida A., McNiven S., Tahira P., Ikebukuro K., Uchiyama S., Masuda Y. and Karube I., 2001. Detection of phycobilin pigments and their seasonal change in Lake Kasumigaura using a sensitive in situ fluorometric sensor. Anal. Lett., 34, 2521–2533. [CrossRef] [Google Scholar]
- Bell W.H. and Mitchell R., 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull., 143, 264–277. [Google Scholar]
- Berg K.A., Lyra C., Sivonen K., Paulin L., Suomalainen S., Tuomi P. and Rapala J., 2009. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J., 3, 314–325. [CrossRef] [PubMed] [Google Scholar]
- Berman T. and Viner-Mozzini Y., 2001. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquat. Microb. Ecol., 24, 255–264. [CrossRef] [Google Scholar]
- Bianucci F., Bernagozzi M., Sacchetti R. and Bisbini P., 2001. Determination of Aeromonas spp. and Pseudomonas spp. in chlorinated water supply. Ann. Ig., 13, 185–189. [PubMed] [Google Scholar]
- Borrell N., Figueras M.J. and Guarro J., 1998. Phenotypic identification of Aeromonas genomospecies from clinical and environmental sources. Can. J. Microbiol., 44, 103–108. [PubMed] [Google Scholar]
- Bostroëm B., Pettersson A.K. and Ahlgren I., 1989. Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow eutrophic lake. Aquat. Sci., 51, 153–178. [CrossRef] [Google Scholar]
- Brettar I. and Höfle M.G., 1993. Nitrous oxide producing heterotrophic bacteria from the water column of the Baltic sea: abundance and molecular identification. Mar. Ecol. Prog. Ser., 94, 253–265. [CrossRef] [Google Scholar]
- Brunberg A.K., 1995. Microbial activity and phosphorus dynamics in eutrophic lake sediments enriched with Microcystis colonies. Freshw. Biol., 33, 541–555. [CrossRef] [Google Scholar]
- Brunberg A.K., 1999. Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol. Ecol., 29, 13–22. [CrossRef] [Google Scholar]
- Casamatta D. and Wickstrom C., 2000. Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa. Microb. Ecol., 41, 64–73. [CrossRef] [Google Scholar]
- Davis T.W., Berry D.L., Boyer G.L. and Gobler C.J., 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725. [CrossRef] [Google Scholar]
- Eiler A. and Bertilsson S., 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol., 6, 1228–1243. [CrossRef] [PubMed] [Google Scholar]
- Grossart H.-P. and Simon M., 1997. Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnol. Oceanogr., 42, 1651–1659. [CrossRef] [Google Scholar]
- Jin X. and Tu Q., 1990. The standard methods for observation and analysis of lake eutrophication (2nd edn), China Environmental Science Press, Beijing (in Chinese). [Google Scholar]
- Kangatharalingam N., Wang L. and Priscu J.C., 1991. Evidence for bacterial chemotaxis to cyanobacteria from a radioassay technique. Appl. Environ. Microbiol., 57, 2395–2398. [PubMed] [Google Scholar]
- Kirchman D.L., 2002. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol., 39, 91–100. [PubMed] [Google Scholar]
- Kormas K.A., Vardaka E., Moustaka-Gouni M., Kontoyanni V., Petridou E., Gkelis S. and Neofitou C., 2010. Molecular detection of potentially toxic cyanobacteria and their associated bacteria in lake water column and sediment. World J. Microbiol. Biotechnol., 26, 1473–1482. [Google Scholar]
- Manage P.M., Kawabata Z. and Nakano S.I., 2000. Algicidal effects of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat. Microb. Ecol., 22, 111–117. [CrossRef] [Google Scholar]
- Muyzer G., de Waal E.C. and Uitterlinden A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59, 695–700. [PubMed] [Google Scholar]
- Nealson K.H., Moser D.P., and Saffarini D.A., 1995. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl. Environ. Microbiol., 61, 1551–1554. [PubMed] [Google Scholar]
- Pan G., Hu Z., Lei A. and Li S., 2008. Effect of crude microcystin on the viable but non-culturable state of Aeromonas sobria in aquatic environment. J. Lake Sci., 20, 105–109 (in Chinese). [Google Scholar]
- Pearl H.W., 1988. Growth and reproductive strategies of freshwater bluegreen algae (cyanobacteria). In: Sandgren C.D. (ed.), Growth and reproductive strategies of freshwater phytoplankton, Cambridge University Press, Cambridge, 261–315. [Google Scholar]
- Pettibone G.W., 1998. Population dynamics of Aeromonas spp. in an urban river watershed. J. Appl. Microbiol., 85, 723–730. [CrossRef] [PubMed] [Google Scholar]
- Rashidan K.K. and Bird D.F., 2001. Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb. Ecol., 41, 97–105. [PubMed] [Google Scholar]
- Reynolds C.S., 2006. The ecology of phytoplankton, Cambridge University Press, Cambridge, 384 p. [Google Scholar]
- Reynolds C.S., Jaworski G.H.M., Cmiech H.A. and Leedale G.F., 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz Emend Elenkin. Proc. R. Soc. Lond. Ser. B., 293, 419–477. [Google Scholar]
- Riemann L. and Winding A., 2001. Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microb. Ecol., 42, 274–285. [CrossRef] [PubMed] [Google Scholar]
- Rinta-Kanto J.M., Ouellette A.J., Boyer G.L., Twiss M.R., Bridgeman T.B. and Willhelm S.W., 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol., 39, 4198–4205. [Google Scholar]
- Rooney-Varga J.N., Giewat M.W., Savin M.C., Sood S., LeGresley M. and Martin J.L., 2005. Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol., 49, 163–175. [CrossRef] [PubMed] [Google Scholar]
- Salomon P.S., Janson S. and Granéli E., 2003. Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae, 2, 261–272. [CrossRef] [Google Scholar]
- Schuster S. and Herndl G.J., 1995. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Mar. Ecol. Prog. Ser., 124, 227–236. [CrossRef] [Google Scholar]
- Shi L.M., Cai Y.F., Yang H.L., Xing P., Li P.F., Kong L.D. and Kong F.X., 2009. Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. J. Environ. Sci., 21, 1581–1590. [CrossRef] [Google Scholar]
- Shi L.M., Cai Y.F., Wang X.Y., Li P.F., Yu Y. and Kong F.X., 2010. Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J. Freshw. Ecol., 25, 193–203. [CrossRef] [Google Scholar]
- Sigee D.C., 2005. Freshwater microbiology, John Wiley and Sons Ltd., West Sussex, England, 524 p. [Google Scholar]
- Singh L., Sairam M., Agarwal M.K. and Alam S.I., 2000. Characterization of Aeromonas hydrophila strains and their evaluation for biodegradation of night soil. World J. Microbiol. Biotechnol., 16, 625–630. [Google Scholar]
- Steppe T.F., Olson J.B., Paerl H.W., Litaker R.W. and Belnap J., 1996. Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol. Ecol., 21, 149–156. [CrossRef] [Google Scholar]
- Tillett D. and Neilan B.A., 2000. Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J. Phycol., 36, 251–258. [CrossRef] [Google Scholar]
- Valeria A.M., Ricardo E.J., Stephan P. and Alberto W.D., 2006. Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba-Argentina). Biodegradation, 17, 447–455. [CrossRef] [PubMed] [Google Scholar]
- Van Hannen E.J., Zwart G., Van Agterveld M.P., Gons H.J., Ebert J. and Laanbroek H.J., 1999. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl. Environ. Microbiol., 65, 795–801. [PubMed] [Google Scholar]
- Van der Westhuizen A.J., Eloff J.N. and Krüger G.H.J., 1986. Effect of temperature and light intensity (fluence rate) on the composition of the toxin of the cyanobacterium Microcystis aeruginosa (UV-006). Arch. für Hydrobiol., 108, 145–154. [Google Scholar]
- Verspagen J.M.H., Snelder E.O.F.M., Visser P.M., Johnk K.D., Ibelings B.W., Mur L.R. and Huisman J., 2005. Benthic–pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshw. Biol., 50, 854–867. [Google Scholar]
- Worm J. and Søndergaard M., 1998. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat. Microb. Ecol., 14, 19–28. [CrossRef] [Google Scholar]
- Wu X., Xi W., Ye W. and Yang H., 2007. Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiol. Ecol., 61, 85–96. [CrossRef] [PubMed] [Google Scholar]
- Zheng X.H., Xiao L., Ren J. and Yang L.Y., 2008. Variation of bacterial community composition in the outbreak and decline of Microcystis spp. bloom in Lake Xuanwu. Huan Jing Ke Xue, 29, 2956–2962 (in Chinese). [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.