Free Access
Ann. Limnol. - Int. J. Lim.
Volume 47, Number 3, 2011
Page(s) 281 - 295
Published online 04 July 2011
  • Arts G.H.P., 2002. Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquat. Bot., 73, 373–393. [Google Scholar]
  • Arts G.H.P., Van der Velde G., Roelofs J.G.M. and Van Swaay C.A.M., 1990. Successional changes in the soft-water macrophyte vegetation of (sub)atlantic, sandy lowland regions during this century. Freshwater Biol., 24, 287–294. [Google Scholar]
  • Barko J.W. and Smart R.M., 1983. Effect of organic matter additions to sediment on the growth of aquatic plants. J. Ecol., 71, 161–175. [Google Scholar]
  • Barko J.W. and Smart R.M., 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology, 67, 1328–1340. [CrossRef] [Google Scholar]
  • Barko J.W., Gunnison D. and Carpenter S.R., 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot., 41, 41–65. [Google Scholar]
  • Blindow H., 1992. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biol., 28, 9–14. [Google Scholar]
  • Carpenter S.R. and Lodge D.M., 1986. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot., 26, 341–370. [Google Scholar]
  • Chambers P.A., Lacoul P. and Murphy K.J., 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595, 9–26. [CrossRef] [Google Scholar]
  • De Lyon M.J.H. and Roelofs J.G.M., 1986a. Waterplanten in relatie tot waterkwaliteit en bodemgesteldheid. Deel 1. Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, 106 p. [Google Scholar]
  • De Lyon M.J.H. and Roelofs J.G.M., 1986b. Waterplanten in relatie tot waterkwaliteit en bodemgesteldheit. Deel 2. Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, 126 p. [Google Scholar]
  • Del Pozo R., Fernandes-Alez C. and Fernandez-Alez M., 2010. An assessment of macrophyte community metrics in the determination of the ecological condition and total phosphorus concentration of Mediterranen ponds. Aquat. Bot., 92, 55–62. [Google Scholar]
  • Doll R., 1991. Die Pflanzengesellschaften der stehenden Gewässer in Mecklemburg-Vorpommern. Teil I.3. Potamogetonetea Tx. Et Prsg. 42. Laichkrautgesellschaften. Feddes Repert., 102, 217–317. [Google Scholar]
  • Egerston C.J., Kopaska J.A. and Downing J.A., 2004. A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia, 524, 145–156. [CrossRef] [Google Scholar]
  • European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official J. Eur. Com., L327, 1–72. [Google Scholar]
  • Free G., Bowman J., McGarrigle M., Caroni R., Donnelly K., Tierney D., Trodd W. and Little R., 2009. The identification, characterization and conservation value of isoetid lakes in Ireland. Aquat. Conserv.: Mar. Freshwater Ecosyst., 19, 264–273. [Google Scholar]
  • Gaudet J.J. and Muthuri F.M., 1981. Nutrient relationships in shallow water in an African Lake. Lake Naivasha. Oecologia (Berlin), 49, 109–118. [CrossRef] [PubMed] [Google Scholar]
  • Hach Company, 1992. Hach Water Analysis Handbook, Hach Co., Loveland, Colorado, 831 p. [Google Scholar]
  • Heegaard E., Briks H.H., Gibson C.E., Smith S.J. and Wolfe-Murphy S., 2001. Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquat. Bot., 70, 175–123. [Google Scholar]
  • Hermanowicz W., Dożańska W., Dojlido J. and Koziorowski B., 1999. Fizyczno-chemiczne badanie wody i ścieków, Arkady, Warszawa, 847 p. [Google Scholar]
  • Hinneri S., 1976. On the ecology and phenotypic plasticity of vascular hydrophytes in a sulphate-rich, acidotrophic freshwater reservoir, SW coast of Finland. Ann. Bot. Fenn., 13, 97–105. [Google Scholar]
  • Jackson S.T. and Charles D.F., 1988. Aquatic macrophytes in Adirondack (New York) lakes: pattern of species composition in relation to environment. Can. J. Bot., 66, 1449–1460. [Google Scholar]
  • James W.F. and Barko J.W., 1990. Macrophhyte influences on the zonation of sediment accretion and composition in a north-temperature reservoir. Arch. Hydrobiol., 120, 129–142. [Google Scholar]
  • Jongman R.H.G., Ter Braak C.J.F. and Van Tongeren O.F.R., 1987. Data Analysis in Communities and Landscape Ecology, Pudoc. Wageningen, The Netherlands. Reissued in 1995 by Cambridge University Press, Cambridge, xix+299 p. [Google Scholar]
  • Kadono Y., 1982. Occurrence of aquatic macrophytes in relation to pH, alkalinity, Ca++, Cl and conductivity. Japan. J. Ecol., 32, 39–44. [Google Scholar]
  • Kłosowski S., 1985. Habitat conditions and bioindicator value of the main communities of aquatic vegetation in north-east Poland. Pol. Arch. Hydrobiol., 32, 7–29. [Google Scholar]
  • Kłosowski S., 1990. Litoralvegetation stehender Gewässer–Ökologie, Dynamik und Bioindikationswert. Pol. Bot. Stud., 1, 149–184. [Google Scholar]
  • Kłosowski S., 1992. Temporal and spatial variation of habitat conditions in the zonation of littoral plant communities. Aquat. Bot., 43, 199–208. [Google Scholar]
  • Kłosowski S., 2006. The relationships between environmental factors and the submerged Potametea associations in lakes od north-eastern Poland. Hydrobiologia, 560, 15–29. [CrossRef] [Google Scholar]
  • Kłosowski S. and Jabłońska E., 2009. Aquatic and swamp plant communities as indicators of operties of astatic water bodies in north-eastern Poland. Limnologica, 39, 115–127. [Google Scholar]
  • Kłosowski S. and Tomaszewicz H., 1990. Standortverhältnisse des Nupharetum pumili Oberdorfer 1957 in der Suwałki-Seenplatte (Nord-Ostpolen). Arch. Hydrobiol., 117, 365–382. [Google Scholar]
  • Kozlowski G. and Eggenberg S., 2005. Vorkommen der Kleinen Teichrose Nuphar pumila und des Hybrids Nintermedia in der Schweiz. Bot. Helv., 115, 125–136. [Google Scholar]
  • Kunii H., 1991. Aquatic macrophyte composition in relation to environmental factors of irrigation ponds around Lake Shinji, Shimane, Japan. Vegetation, 97, 137–148. [CrossRef] [Google Scholar]
  • Lacoul P. and Freedman B., 2006. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquat. Bot., 84, 3–16. [CrossRef] [Google Scholar]
  • Lind C.T. and Cottam G., 1969. The submerged aquatics of University Bay: a study of eutrophication. Am. Mid. Nat., 81, 353–369. [Google Scholar]
  • Lorens B., Grądziel T. and Sugier P., 2003. Changes in vegetation of restored water-land ecotone of Lake Bikcze (Polesie Lubelskie Region, Eastern Poland) in the years 1993–1998. Pol. J. Ecol., 51, 175–182. [Google Scholar]
  • Lukács B.A., Dévai G. and Tóthmérész B., 2009. Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along the Upper-Tisza river (in Hungary). Phytocoenologia, 39, 287–293. [CrossRef] [Google Scholar]
  • Lumbreras A., Olives A., Quintana J.R., Pardo K. and Molina J.A., 2008. Ecology of aquatic Ranunculus communities under the Mediterranen climate. Aquat. Bot., 90, 59–66. [Google Scholar]
  • Mäemets H., Palmik K., Haldna M., Sudnitsyna D. and Melnik M., 2010. Eutrophication and macrophyte species richness in the large shallow North-European Lake Pepsi. Aquat. Bot., 92, 273–280. [Google Scholar]
  • Mäkelä S., Huitu E. and Arvola L., 2004. Spatial patterns in aquatic vegetation composition and environmental covariates along chains of lakes in the Kokemänjoki watershed (S. Finland). Aquat. Bot., 80, 253–269. [Google Scholar]
  • Marek S., 1992. Transformation of lakes in mires. Acta Soc. Bot. Pol., 61, 103–113. [Google Scholar]
  • McElarney Y.R. and Rippey B., 2009. A comparison of lake classifications based on aquatic macrophytes and physicaland chemical water body descriptors. Hydrobiologia, 625, 195–206. [CrossRef] [Google Scholar]
  • Melzer A., 1999. Aquatic macrophytes as tools for lake management. Hydrobiologia, 395/396, 181–190. [CrossRef] [Google Scholar]
  • Misra R.D., 1938. Edaphic factors in the distribution of aquatic plants in the English lakes. J. Ecol., 26, 411–451. [Google Scholar]
  • Misztal M., Smal H., Ligęza S. and Dymińska-Wydra P., 2003. Influence of land-lake ecotone on minera land organic compounds in groundwater and lake water. Pol. J. Ecol., 51, 129–136. [Google Scholar]
  • Moyle J.B., 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. Am. Midl. Nat., 34, 400–420. [Google Scholar]
  • Nurminen L., 2003. Macrophyte species composition reflecting water quality changes in adjacent water bidues of lake Hiiddenvesi, SW Finland. Ann. Bot. Fenn., 40, 199–208. [Google Scholar]
  • Nõges P. and Kisand A., 1999. Horizontal distribution of sediment phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia, 408/409, 167–174. [CrossRef] [Google Scholar]
  • Papastergiadou E. and Babalonas D., 1993a. The relationships between hydrochemical environmental factors and the aquatic macrophytic vegetation in stagnant and slow flowing waters. I. Water quality and distriburion of aquatic associations. Arch. Hydrobiol., Suppl., 90, 475–491. [Google Scholar]
  • Papastergiadou E. and Babalonas D., 1993b. The relationships between hydrochemical environmental factors and the aquatic macrophytic vegetation in stagnant and slow flowing waters. II. Evaluation of plant associations indicative value. Arch. Hydrobiol., Suppl., 90, 493–506. [Google Scholar]
  • Penning W.E., Mjelde M., Dudley B., Hellsten S., Hanganu J., Kolada A., Van den Berg M., Mäemets H., Poikane S., Philips G., Willby N. and Ecke F., 2008a. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquat. Ecol., 42, 237–251. [Google Scholar]
  • Penning W.E., Dudley B., Mjelde M., Hellsten S., Hanganu J., Kolada A., Van den Berg M., Mäemets H., Poikane S., Philips G., Willby N. and Ecke F., 2008b. Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquat. Ecol., 42, 253–264. [Google Scholar]
  • Pieczyńska E., 1972. Ecology of the eulittoral zone of lakes. Ekol. Pol., 20, 637–732. [Google Scholar]
  • Pietsch W., 1972. Ausgewälte beispiele für Indikatoreigenschaften höherer Wasserpflanzen. Arch Naturschutz u. Landschaftsforsch., 12, 121–151. [Google Scholar]
  • Pietsch W., 1982. Makrophytische Indikatoren für ökochemische Beschaffenheit der Gewässer. In: Breitig G. and Tümpling W. (eds.), Ausgewählte Methoden der Wasseruntersuchung, Bd 2, Gustav Fischer Verlag, Jena, 67–88. [Google Scholar]
  • Pip E., 1988. Niche congruency of aquatic macrophytes in central North America with respect to 5 water chemistry parameters. Hydrobiologia, 162, 173–182. [CrossRef] [Google Scholar]
  • Planter M., 1973. Physical and chemical conditions in the helophytes zone of the lake littoral. Pol. Arch. Hydrobiol., 20, 1–7. [Google Scholar]
  • Rejewski M., 1981. Roślinność jezior rejonu Laski w Borach Tucholskich, Uniwersytet Mikołaja Kopernika, Toruń, 178 p. [Google Scholar]
  • Roelofs J.G.M., 1983. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. Aquat. Bot., 17, 139–155. [Google Scholar]
  • Roweck H., 1988. Ökologische Untersuchungen an Teichrosen. Arch. Hydrobiol., Suppl., 81, 103–358. [Google Scholar]
  • Sand-Jensen K., Tenna R., Vesterrgaard O. and Larsen-Soren E., 2000. Macrophyte decline in Danish lakes and streams over the past 1000 years. J. Ecol., 88, 1030–1040. [Google Scholar]
  • Sass L., Bozek M.A., Hauxwell J.A., Wagner K. and Knight S., 2010. Response of aquatic macrophytes to human land use perturbation in the watersheds of Wisconsin lakes, U.S.A. Aquat. Bot., 93, 1–8. [Google Scholar]
  • Schamburg J., Schranz C., Hofmann G., Stelzer D. and Schneider S., 2004. Macrophytes and phytobenthos as indicators of ecological status in German lakes – a contribution to the implementation of the Water Framework Directive. Limnologica, 34, 302–314. [Google Scholar]
  • Schmieder K. and Lehmann A., 2004. A spatio-temporal framework for efficient inventories of natural resources: A case study with submersed macrophytes. J. Veg. Sci., 15, 807–816. [Google Scholar]
  • Schneider S., 2007. Macrophyte trophic indicator values from a European perspective. Limnologica, 37, 281–289. [Google Scholar]
  • Smits A.J.M., De Lyon M.J.H., Van der Velde G., Steentjes P.L.M. and Roelofs J.G.M., 1988. Distribution of three nymphaeid macrophytes (Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze) in relation to alkalinity and uptake of inorganic carbon. Aquat. Bot., 32, 45–62. [Google Scholar]
  • Spence D.H.N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol., 55, 147–170. [Google Scholar]
  • Spence D.H.N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res., 12, 37–125. [Google Scholar]
  • Szańkowski M. and Kłosowski S., 2001. Habitat conditions of the phytocoenoses dominated by Luronium natans (L.) Rafin in Poland. Hydrobiologia, 455, 213–222. [CrossRef] [Google Scholar]
  • Szańkowski M. and Kłosowski S., 2006. Habitat variability of the Littorelletea uniflorae plant communities in Polish Lobelia lakes. Hydrobiologia, 570, 117–126. [CrossRef] [Google Scholar]
  • Ter Braak C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for nultivariate direct gradient analysis. Ecology, 67, 1167–1179. [CrossRef] [Google Scholar]
  • Ter Braak C.J.F. and Šmilauer P., 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows. Software for Canonical Community Ordination (version 4), Centre for Biometry, Wageningen & Ithaca, Microcomputer Power, New York. [Google Scholar]
  • Toivonen H. and Huttunen P., 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquat. Bot., 51, 197–221. [Google Scholar]
  • Tomaszewicz H., 1979. Roślinność wodna I szuwarowa Polski (klasy Lemnetea, Charetea, Potamogetonetea, Phragmitetea) według stanu zbadania na rok 1975. Rozpr. Uniw. Warsz., 160, 1–325. [Google Scholar]
  • Tóth L.G., Poikane S., Penning E.W., Free G., Mäemets H., Kolada A. and Hanganu J., 2008. First steps in the Central-Baltic intercalibration exercise on lake macrophytes: where do we start? Aquat. Ecol., 42, 265–275. [CrossRef] [Google Scholar]
  • Úlehlová B. and Pribil S., 1978. Water chemistry in the fishpond littorals. In: Dykyjová D. and Kvĕt J. (eds.), Pond Littoral Ecosystems. Structure and Functioning, Ecological Studies, 28, Springer, Berlin, 126–140. [Google Scholar]
  • Van der Velde G., Custers C.P.C. and De Lyon M.J.H., 1986. The distribution of four nymphaeid species in the Netherlands in relation to selected abiotic factors. In: Proceedings EWRS/AAB, 7th Symposium on Aquatic Weeds, 363–368. [Google Scholar]
  • Van Groenendael J.M., Roepers R.G., Woltjer I. and Zweers H.R., 1996. Vegetation succession in lakes of West Connemara, Ireland: comparing predicted and actual changes. J. Veg. Sci., 7, 211–218. [Google Scholar]
  • Van Katwijk M.M. and Roelofs J.G.M., 1988. Vegetaties van waterplanten in relatie tot het milieu, Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, 133 p. [Google Scholar]
  • Vestergaard O. and Sand-Jensen K., 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat. Bot., 67, 85–107. [Google Scholar]
  • Wiegleb G., 1978. Untersuchungen über den Zusammenhang zwischen hydrochemischen Umveltfaktoren und Makrophytenvegetation in stehenden Gewässern. Arch. Hydrobiol., 83, 443–484. [Google Scholar]
  • Wilcox D.A. and Simonin H.A., 1987. A chronosequence of aquatic macrophyte communities in dune ponds. Aquat. Bot., 28, 227–242. [Google Scholar]
  • Willby N.L., Abernethy V.J. and Demars B.O.L., 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biol., 43, 43–74. [CrossRef] [Google Scholar]
  • Zar J.A., 1984. Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 718 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.