Free Access
Ann. Limnol. - Int. J. Lim.
Volume 47, Number 2, 2011
Page(s) 141 - 150
Published online 06 April 2011
  • Abernethy V.J., Sabbatini M.R. and Murphy K.J., 1996. Response of Elodea canadensis Michx, and Myriophyllum spicatum L. to shade, cutting and competition in experimental culture. Hydrobiologia, 340, 219–224. [CrossRef] [Google Scholar]
  • Agami M. and Waisel Y., 1985. Inter-relationships between Najas marina L. and three other species of aquatic macrophytes. Hydrobiologia, 126, 169–173. [CrossRef] [Google Scholar]
  • Agami M. and Waisel Y., 2002. Competitive relationships between two water plant species: Najas marina L. and Myriophyllum spicatum L. Hydrobiologia, 482, 197–200. [CrossRef] [Google Scholar]
  • Asaeda T., Sultana M., Manatunge J. and Fujino T., 2004. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environ. Exp. Bot., 52, 225–238. [Google Scholar]
  • Baattrup-Pedersen A., Larsen S.E. and Riis T., 2003. Composition and richness of macrophyte communities in small Danish streams-influence of environmental factors and weed cutting. Hydrobiologia, 495, 171–179. [CrossRef] [Google Scholar]
  • Baier T. and Neuwirth E., 2007. Excel :: COM :: R. Computation. Stat., 22, 91–108. [Google Scholar]
  • Barko J., Hardin D.G. and Matthews M.S., 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Can. J. Bot., 60, 877–887. [CrossRef] [Google Scholar]
  • Barrat-Segretain M.H., 2004. Growth of Elodea canadensis and Elodea nuttallii in monocultures and mixture under different light and nutrient conditions. Arch. Hydrobiol., 161, 133–144. [Google Scholar]
  • Barrat-Segretain M.H. and Amoros C., 1996. Recolonization of cleared riverine macrophyte patches: importance of the border effect. J. Veg. Sci., 7, 769–776. [CrossRef] [Google Scholar]
  • Bassow S.L. and Bazzaz F.A., 1997. Intra-and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia, 109, 507–515. [CrossRef] [PubMed] [Google Scholar]
  • Bonis A. and Grillas P., 2002. Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquat. Bot., 72, 235–248. [CrossRef] [Google Scholar]
  • Bowes G. and Salvucci M.E., 1989. Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat. Bot., 34, 233–266. [CrossRef] [Google Scholar]
  • Caffrey J.M. and Kemp W.M., 1991. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. Aquat. Bot., 40, 109–128. [CrossRef] [Google Scholar]
  • Cenzato D. and Ganf G., 2001. A comparison of growth responses between two species of Potamogeton with contrasting canopy architecture. Aquat. Bot., 70, 53–66. [CrossRef] [Google Scholar]
  • Chambers P. and Prepas E., 1990. Competition and coexistence in submerged aquatic plant communities: the effects of species interactions versus abiotic factors. Freshwater Biol., 23, 541–550. [Google Scholar]
  • Davis B.C. and Fourqurean J.W., 2001. Competition between the tropical alga, Halimeda incrassata, and the seagrass, Thalassia testudinum. Aquat. Bot., 71, 217–232. [CrossRef] [Google Scholar]
  • Dring M.J., 1991. The biology of marine plants, Cambridge University Press. [CrossRef] [Google Scholar]
  • Duarte C.M., 1991. Seagrass depth limits. Aquat. Bot., 40, 363–377. [CrossRef] [Google Scholar]
  • Duarte C.M. and Kalf J., 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol. Oceanogr., 31, 1072–1080. [CrossRef] [Google Scholar]
  • Fisher S.G., Gray L.J., Grimm N.B. and Busch D.E., 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr., 52, 93–110. [CrossRef] [Google Scholar]
  • Goldsborough W.J. and Kemp W.M., 1988. Light responses of a submersed macrophyte: implications for survival in turbid tidal waters. Ecology, 69, 1775–1786. [CrossRef] [Google Scholar]
  • Gutschick V., 1999. Biotic and abiotic consequences of differences in leaf structure. New Phytol., 143, 3–18. [CrossRef] [Google Scholar]
  • Harley M.T. and Findlay S., 1994. Photosynthesis-irradiance relationships for three species of submersed macrophytes in the tidal freshwater Hudson River. Estuar. Coasts, 17, 200–205. [CrossRef] [Google Scholar]
  • Kemp W.M., Boynton W.R., Cunningham J.J., Stevenson J.C., Jones T.W. and Means J.C., 1985. Effects of atrazine and linuron on photosynthesis and growth of the macrophytes, Potamogeton perfoliatus L. and Myriophyllum spicatum L. in an estuarine environment. Mar. Environ. Res., 16, 255–280. [CrossRef] [Google Scholar]
  • Madsen J.D., Hartleb C.F. and Boylen C.W., 1991. Photosynthetic characteristics of Myriophyllum spicatum and six submersed aquatic macrophyte species native to Lake George, New York. Freshwater Biol., 26, 233–240. [CrossRef] [Google Scholar]
  • McCreary N.J., 1991. Competition as a mechanism of submersed macrophyte community structure. Aquat. Bot., 41, 177–193. [CrossRef] [Google Scholar]
  • Platt T., Gallegos C.L. and Harrison W.G., 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38, 687–701. [Google Scholar]
  • Rae R., Hanelt D. and Hawes I., 2001. Sensitivity of freshwater macrophytes to UV radiation. Mar. Freshwater Res., 52, 1023–1032. [CrossRef] [Google Scholar]
  • Roxburgh S.H., Shea K. and Wilson J.B., 2004. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology, 85, 359–371. [CrossRef] [Google Scholar]
  • Titus J.E. and Adams M.S., 1979. Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia, 40, 273–286. [CrossRef] [PubMed] [Google Scholar]
  • Titus J.E. and Stone W.H., 1982. Photosynthetic response of two submersed macrophytes to dissolved inorganic carbon concentration and pH. Limnol. Oceanogr., 27, 151–160. [CrossRef] [Google Scholar]
  • Torres Boeger M.R.T. and Poulson M.E., 2003. Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquat. Bot., 75, 123–135. [CrossRef] [Google Scholar]
  • Tóth V.R. and Herodek S., 2009. A simple incubation tank for photosynthesis measurements with six light intensities. Ann. Limnol. - Int. J. Lim., 45, 195–202. [CrossRef] [EDP Sciences] [Google Scholar]
  • Van T.K., Wheeler G.S. and Center T.D., 1999. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquat. Bot., 62, 225–233. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.