Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 46, Number 3, 2010
Page(s) 169 - 179
DOI https://doi.org/10.1051/limn/2010020
Published online 16 August 2010
  • Atkinson B., Grace M.R., Hart B.T. and Vanderkruk K.E.N., 2008. Sediment instability affects the rate and location of primary production and respiration in a sand-bed stream. J. N. Am. Benth. Soc., 27, 581–592. [CrossRef] [Google Scholar]
  • Benke A.C. and Wallace J.B., 2003. Influence of wood on invertebrate communities in streams and rivers. In: Gregory S.V., Boyer K.L. and Gurnell A.M. (eds.), The ecology and management of wood in world rivers, American Fisheries Society Symposium, 37, Bethesda, Maryland, 149–177. [Google Scholar]
  • Benke A.C., van Arsdall T.C. and Gillespie D.M., 1984. Invertebrate productivity in a subtropical blackwater river: the importance of habitat and life history. Ecol. Monogr., 54, 25–61. [CrossRef] [Google Scholar]
  • Biggs B.J.F., Smith R.A. and Duncan M.J., 1999. Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. J. N. Am. Benth. Soc., 18, 222–241. [CrossRef] [Google Scholar]
  • Bond N.R., Sabater S., Glaister A., Roberts S. and Vanderkruk K., 2006. Colonisation of introduced timber by algae and invertebrates, and its potential role in aquatic ecosystem restoration. Hydrobiologia, 556, 303–316. [CrossRef] [Google Scholar]
  • Bowen K.L., Kaushik N.K. and Gordon A.M., 1998. Macroinvertebrate communities and biofilm chlorophyll on woody debris in two Canadian shield lakes. Arch. Hydrobiol., 141, 257–281. [Google Scholar]
  • Cleven E.J., 1999. An improved method of taking cores in sandy sediments. Arch. Hydrobiol., 147, 65–72. [Google Scholar]
  • Cleven E.J. and Meyer E.I., 2003. A sandy hyporheic zone limited vertically by a solid boundary. Arch. Hydrobiol., 157, 267–288. [CrossRef] [Google Scholar]
  • Collier K.J., 2004. Invertebrate community dynamics in soft-bottomed streams of northern New Zealand: a spatio-temporal hierarchy. New Zeal. J. Mar. Fresh., 38, 1–18. [CrossRef] [Google Scholar]
  • Collier K.J. and Halliday J.N., 2000. Macroinvertebrate-wood associations during decay of plantation pine in New Zealand pumice-bed streams: stable habitat or trophic subsidy? J. N. Am. Benth. Soc., 19, 94–111. [CrossRef] [Google Scholar]
  • Eggert S.L. and Wallace J.B., 2007. Wood biofilm as a food resource for stream detritivores. Limnol. Oceanogr., 52, 1239–1245. [CrossRef] [Google Scholar]
  • Elosegi A., Diez J.R. and Pozo J., 1999. Abundance, characteristics, and movement of woody debris in four Basque streams. Arch. Hydrobiol., 144, 455–471. [Google Scholar]
  • Elosegi A., Diez J.R. and Pozo J., 2007. Contribution of dead wood to the carbon flux in forested streams. Earth Surf. Process. Landforms, 32, 1219–1228. [CrossRef] [Google Scholar]
  • Giller S. and Malmqvist B., 1998. The Biology of Streams and Rivers, Oxford University Press, Oxford, 296 p. [Google Scholar]
  • Golladay S.W. and Sinsabaugh R.L., 1991. Biofilm development on leaf and wood surfaces in a boreal river. Freshw. Biol., 25, 437–450. [CrossRef] [Google Scholar]
  • Gulis V., Suberkropp K. and Rosemond A.D., 2008. Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams. Appl. Environ. Microbiol., 74, 1094–1101. [CrossRef] [PubMed] [Google Scholar]
  • Hax C.L. and Golladay S.W., 1998. Flow disturbance of macroinvertebrates inhabiting sediments and woody debris in a prairie stream. Am. Mid. Nat., 139, 210–223. [CrossRef] [Google Scholar]
  • Hoffmann A. and Hering D., 2000. Wood-associated macroinvertebrate fauna in Central European streams. Int. Rev. Hydrobiol., 85, 25–48. [CrossRef] [Google Scholar]
  • Homermann A., 2001. Untersuchung zur xylobionten Makroinvertebratenfauna verschiedener Fließgewässertypen. Unpublished thesis, University of Muenster, Germany, 97 p. [Google Scholar]
  • Johnson Z.B. and Kennedy J.H., 2003. Macroinvertebrate assemblages of submerged woody debris in the Elm Fork of the Trinity River, Texas. J. Freshwater Ecol., 18, 187–197. [Google Scholar]
  • Kail J., Hering D., Muhar S., Gerhard M. and Preis S., 2007. The use of large wood in stream restoration: experiences from 50 projects in Germany and Austria. J. Appl. Ecol., 44, 1145–1155. [CrossRef] [Google Scholar]
  • Kiffney P.M., Richardson J.S. and Bull J.P., 2003. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. J. Appl. Ecol., 40, 1060–1076. [CrossRef] [Google Scholar]
  • Lester R.E. and Boulton A.J., 2008. Rehabilitating agricultural streams in Australia with wood: A review. Environ. Manage., 42, 310–326. [CrossRef] [PubMed] [Google Scholar]
  • Mackay R.J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Can. J. Fish. Aquat. Sci., 49, 617–628. [CrossRef] [Google Scholar]
  • Magana A.M. and Bretschko G., 2003. Retention of coarse particulate organic matter on the sediments of Njoro River, Kenya. Int. Rev. Hydrobiol., 88, 414–426. [CrossRef] [Google Scholar]
  • Millington C.E. and Sear D.A., 2007. Impacts of river restoration on small-wood dynamics in a low-gradient headwater stream. Earth Surf. Process. Landforms, 32, 1204–1218. [CrossRef] [Google Scholar]
  • Nusch E.A., 1999. Chlorophyllbestimmung – photometrisch. In: von Tümpling W. and Friedrich G. (eds.), Methoden der biologische Gewässeruntersuchung Fischer Verlag, Jena, Germany, Band 2, 368–375. [Google Scholar]
  • Pereira C.R.D., Anderson N.H. and Dudley T., 1982. Gut content analysis of aquatic insects from wood substrates. Melanderia, 39, 23–33. [Google Scholar]
  • Robertson A.I., Bacon P. and Heagney C., 2001. The responses of floodplain primary production to flood frequency and timing. J. Appl. Ecol., 38, 126–136. [CrossRef] [Google Scholar]
  • Sabater S., Gregory S.V. and Sedell J.R., 1998. Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. J. Phycol., 34, 561–567. [CrossRef] [Google Scholar]
  • Schmedtje U. and Colling M., 1996. Ökologische Typisierung der aquatischen Makrofauna. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft, 4/96, 1–543. [Google Scholar]
  • Sinsabaugh R.L., Golladay S.W. and Linkins A.E., 1991. Comparison of epilithic and epixylic biofilm development in a boreal river. Freshw. Biol., 25, 179–187. [CrossRef] [Google Scholar]
  • Smokorowski K.E., Pratt T.C., Cole W.G., McEachern L.J. and Mallory E.C., 2006. Effects on periphyton and macroinvertebrates from removal of submerged wood in three Ontario lakes. Can. J. Fish. Aquat. Sci., 63, 2038–2049. [CrossRef] [Google Scholar]
  • Spänhoff B. and Meyer E.I., 2004. Breakdown rates of wood in streams. J. N. Am. Benth. Soc., 23, 189–197. [CrossRef] [Google Scholar]
  • Spänhoff B., Alecke C. and Meyer E.I., 2001. Simple method for rating the decay stages of submerged woody debris. J. N. Am. Benth. Soc., 20, 385–394. [CrossRef] [Google Scholar]
  • Spänhoff B., Reuter C. and Meyer E.I., 2006. Epixylic biofilm and invertebrate colonization on submerged pine branches in a regulated lowland stream. Arch. Hydrobiol., 165, 515–536. [CrossRef] [Google Scholar]
  • Tank J.L. and Dodds W., 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshw. Biol., 48, 1031–1049. [CrossRef] [Google Scholar]
  • van der Kooij D., Veenendaal H., Baars-Lorist C., van der Klift D.W. and Drost Y.C., 1995. Biofilm formation on surfaces of glass and teflon exposed to treated water. Water Res., 29, 1655–1662. [CrossRef] [Google Scholar]
  • Ward G.M. and Aumen N.G., 1986. Woody debris as a source of fine organic matter in coniferous forest stream ecosystems. Can. J. Fish. Aquat. Sci., 43, 1635–1642. [CrossRef] [Google Scholar]
  • Webster J.R., Benfield E.F., Ehrman T.P., Schaeffer M.A., Tank J.L., Hutchens J.J. and D'Angelo D.J., 1999. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshw. Biol., 41, 687–705. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.