Free Access
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 4, 2009
Page(s) 237 - 245
Published online 29 October 2009
  • Abrantes N. and Goncalves F., 2003. The dynamics of Ceriodaphnia pulchella (Cladocera) in laboratory. Acta Oecol., 24, S245–S249. [CrossRef] [Google Scholar]
  • Abrantes N., Antunes S.C., Pereira M.J. and Goncalves F., 2006. Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecol., 29, 54–64. [CrossRef] [Google Scholar]
  • A.P.H.A., 1995. Standard Methods for the Examination of Water and Wastewater, 19th edn., American Public Health Association, Washington. [Google Scholar]
  • Amoros C., 1984a. Introduction pratique à la systématique des organismes des eaux continentales françaises. Crustacés cladocères. Bull. Mens. Soc. Linn. Lyon, 3, 72–107. [Google Scholar]
  • Amoros C., 1984b. Introduction pratique à la systématique des organismes des eaux continentales françaises. Crustacés cladocères (suite). Bull. Mens. Soc. Linn. Lyon, 4, 120–144. [Google Scholar]
  • Arnold D.E., 1971. Ingestion, assimilation, survival, and reproduction by Daphnia pulex Fed 7 species of blue-green-algae. Limnol. Oceanogr., 16, 906–920. [Google Scholar]
  • Balseiro E.G., Modenutti B.E. and Queimalinos C.P., 1992. The coexistence of bosmina and ceriodaphnia in a South Andes lake – An analysis of demographic responses. Freshwat. Biol., 28, 93–101. [CrossRef] [Google Scholar]
  • Barros P., 1994. Implicações ecotoxicológicas de cianobactérias em cladóceros, University of Coimbra, Faculty of Sciences and Technology, Coimbra. [Google Scholar]
  • Becker C. and Boersma M., 2003. Resource quality effects on life histories of Daphnia. Limnol. Oceanogr., 48, 700–706. [CrossRef] [Google Scholar]
  • Berzins B. and Pejler B., 1989. Rotifer occurrence and trophic degree. Hydrobiologia, 182, 171–180. [CrossRef] [Google Scholar]
  • Bird D.F. and Prairie Y.T., 1985. Practical guidelines for the use of zooplankton length-weight regression equations. J. Plankton Res., 7, 955–960. [CrossRef] [Google Scholar]
  • Boersma M., Spaak P. and De Meester L., 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: The uncoupling of responses. Amer. Nat., 152, 237–248. [CrossRef] [Google Scholar]
  • Burns C.W., 1969. Relation between filtering rate, temperature, and body size in 4 species of Daphnia. Limnol. Oceanogr., 14, 693–700. [CrossRef] [Google Scholar]
  • Castro B.B. and Goncalves F., 2007. Seasonal dynamics of the crustacean zooplankton of a shallow eutrophic lake from the Mediterranean region. Fund. Appl. Limnol., 169, 189–202. [Google Scholar]
  • Castro B.B., Marques S.M. and Goncalves F., 2007. Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshwat. Biol., 52, 421–433. [Google Scholar]
  • Christoffersen K., Riemann B., Klysner A. and Sondergaard M., 1993. Potential role of fish predation and natural-populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnol. Oceanogr., 38, 561–573. [Google Scholar]
  • de Figueiredo D.R., Antunes S.C., Pereira M.J. and Goncalves F.G., 2004a. Chronic effects of Aphanizomenon flos-aquae on the survival and reproduction of daphnids. Fresenius Environ. Bull., 13, 665–670. [Google Scholar]
  • de Figueiredo D.R., Azeiteiro U.M., Esteves S.M., Goncalves F.J.M. and Pereira M.J., 2004b. Microcystin-producing blooms Coimbra a serious global public health issue. Ecotox. Environ. Safety, 59, 151–163. [Google Scholar]
  • de Figueiredo D.R., Reboleira A., Antunes S.C., Abrantes N., Azeiteiro U., Goncalves F. and Pereira M.J., 2006. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568, 145–157. [CrossRef] [Google Scholar]
  • DeMott W.R., 1989. The role of competition in zooplankton succession. In: Sommer U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer-Verlag, Berlin, 195–252. [Google Scholar]
  • DeMott W.R., 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwat. Biol., 42, 263–274. [CrossRef] [Google Scholar]
  • DeMott W.R., Gulati R.D. and Van Donk E., 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol. Oceanogr., 46, 2054–2060. [Google Scholar]
  • Duncan A., 1985. Body carbon in daphnids as an indicator of the food concentration available in the field. Adv. Limnol., 21, 81–90. [Google Scholar]
  • Geitler L., 1932. Cyanophyceae von Europa. In: Kolkwitz R. (ed.), Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Akademische Verlagsgesellschaft, Leipzig, 1–1196. [Google Scholar]
  • Ghadouani A., Pinel-Alloul B. and Prepas E.E., 2003. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwat. Biol., 48, 363–381. [Google Scholar]
  • Ghadouani A., Pinel-Alloul B. and Prepas E.E., 2006. Could increased cyanobacterial biomass following forest harvesting cause a reduction in zooplankton body size structure? Can. J. Fish. Aquat. Sci., 63, 2308–2317. [Google Scholar]
  • Gliwicz Z.M., 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia, 272, 201–210. [Google Scholar]
  • Goss L.B. and Bunting D.L., 1983. Daphnia development and reproduction – Responses to temperature. J. Thermal Biol., 8, 375–380. [CrossRef] [Google Scholar]
  • Greenwood T.L., Green J.D., Hicks B.J. and Chapman M.A., 1999. Seasonal abundance of small cladocerans in Lake Mangakaware, Waikato, New Zealand. New Zeal. J. Mar. Fresh., 33, 399–415. [CrossRef] [Google Scholar]
  • Gulati R.D. and DeMott W.R., 1996. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. In: 1st International-Plankton-Ecology-Group Workshop on the Role of Food Quality for Zooplankton, Nieuwersluis, 38, 753–768. [Google Scholar]
  • Haney J.F., 1987. Field studies on zooplankton-cyanobacteria interactions. New Zeal. J. Mar. Fresh., 21, 467–475. [Google Scholar]
  • Haney J.F. and Hall D.J., 1973. Sugar-coated Daphnia – Preservation technique for Cladocera. Limnol. Oceanogr., 18, 331–333. [CrossRef] [Google Scholar]
  • Hessen D.O., Faafeng B.A. and Brettum P., 2003. Autotroph: herbivore biomass ratios; carbon deficits judged from plankton data. Hydrobiologia, 491, 167–175. [Google Scholar]
  • Hulsmann S., 2001. Reproductive potential of Daphnia galeata in relation to food conditions: implications of a changing size-structure of the population. Hydrobiologia, 442, 241–252. [CrossRef] [Google Scholar]
  • Hulsmann S., Vijverberg J., Boersma M. and Mooij W.M., 2004. Effects of infochemicals released by gape-limited fish on life history traits of Daphnia: a maladaptive response? J. Plankton Res., 26, 535–543. [Google Scholar]
  • Jeppesen E., Jensen J.P., Sondergaard M. and Lauridsen T., 1999. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia, 408, 217–231. [CrossRef] [Google Scholar]
  • Komárek J. and Anagnostidis K., 1999. Cyanoprokaryota 1, Teil: Chroococcales. Süßwasserflora von Mitteleuropa, Gustav Fischer Verlag, Jena. [Google Scholar]
  • Komárek J. and Fott B., 1983. Das Phytoplankton des Süßwassers, Systematik und Biologie. 7. Teil, 1. Hälfte, Chlorophyceae (Grünalgen). Ordnung: Chlorococcales, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart. [Google Scholar]
  • Krammer K. and Lange-Bertalot H., 1986–1991. Bacillariophyceae. 1–4. Süßwasserflora von Mitteleuropa, Gustav Fischer Verlag, Stuttgart. [Google Scholar]
  • Lampert W., 1978. Field-study on dependence of fecundity of Daphnia spec. on food concentration. Oecologia, 36, 363–369. [CrossRef] [PubMed] [Google Scholar]
  • Lampert W., 1982. Further-studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol., 95, 207–220. [Google Scholar]
  • Lampert W., 1987. Laboratory studies on zooplankton-Cyanobacteria interactions. New Zeal. J. Mar. Fresh., 21, 483–490. [Google Scholar]
  • Lampert W., 1988. The relative importance of food limitation and predation in the seasonal cycle of two Daphnia species. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen, 23, 713–718. [Google Scholar]
  • Lampert W., 1993. Phenotypic plasticity of the size at 1st reproduction in Daphnia – The importance of maternal size. Ecology, 74, 1455–1466. [CrossRef] [Google Scholar]
  • Lampert W., 1994. Phenotypic plasticity of the filter screens in Daphnia – Adaptation to a low-food environment. Limnol. Oceanogr., 39, 997–1006. [CrossRef] [Google Scholar]
  • Lampert W. and Brendelberger H., 1996. Strategies of phenotypic low-food adaptation in Daphnia: Filter screens, mesh sizes, and appendage beat rates. Limnol. Oceanogr., 41, 216–223. [CrossRef] [Google Scholar]
  • Lund J.W.G., Kipling C. and Le Cren E.D., 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by couting. Hydrobiologia, 11, 143–170. [CrossRef] [Google Scholar]
  • Machacek J., 1991. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia, 225, 193–197. [Google Scholar]
  • Machacek J., 2001. Daphnia galeata life history response to heterogeneous food conditions and dissolved chemicals in the Rimov Reservoir. Hydrobiologia, 442, 215–222. [CrossRef] [Google Scholar]
  • Müller-Navarra D. and Lampert W., 1996. Seasonal patterns of food limitation in Daphnia galeata: Separating food quantity and food quality effects. J. Plankton Res., 18, 1137–1157. [Google Scholar]
  • Nogueira A.J.A., 1992. Anamod – Extracção dos componentes modais de distribuições de frequência de variáveis biométricas, University of Coimbra, Faculty of Sciences and Technology, Coimbra. [Google Scholar]
  • Orcutt J.D. and Porter K.G., 1984. The synergistic effects of temperature and food concentration on life-history parameters of Daphnia. Oecologia, 63, 300–306. [CrossRef] [PubMed] [Google Scholar]
  • Paloheimo J.E., 1974. Calculation of instantaneous birth-rate. Limnol. Oceanogr., 19, 692–694. [CrossRef] [Google Scholar]
  • Pinel-Alloul B., 1993. Zooplankton community structure in hardwater hypertrophic lakes of Alberta. Wat. Sci. Technol., 27, 353–361. [Google Scholar]
  • Polishchuk L.V. and Vijverberg J., 2005. Contribution analysis of body mass dynamics in Daphnia. Oecologia, 144, 268–277. [CrossRef] [PubMed] [Google Scholar]
  • Radwan S. and Popiolek B., 1989. Percentage of Rotifers in spring zooplankton in lakes of different trophy. Hydrobiologia, 186, 235–238. [CrossRef] [Google Scholar]
  • Reede T., 1995. Life-history shifts in response to different levels of fish Kairomones in Daphnia. J. Plankton Res., 17, 1661–1667. [CrossRef] [Google Scholar]
  • Reinikainen M., Ketola M. and Walls M., 1994. Effects of the concentrations of toxic Microcystis aeruginosa and an alternative food on the survival of Daphnia pulex. Limnol. Oceanogr., 39, 424–432. [Google Scholar]
  • Repka S., 1996. Inter- and intraspecific differences in Daphnia life histories in response to two food sources: The green alga Scenedesmus and the filamentous cyanobacterium Oscillatoria. J. Plankton Res., 18, 1213–1223. [Google Scholar]
  • Repka S., 1997. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. I. Daphnia galeata feeding on Scenedesmus and Oscillatoria. Freshwat. Biol., 38, 675–683. [Google Scholar]
  • Rohrlack T., Dittmann E., Borner T. and Christoffersen K., 2001. Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl. Environ. Microbiol., 67, 3523–3529. [CrossRef] [PubMed] [Google Scholar]
  • Scourfield D.J. and Harding J.P., 1966. A key to the British freshwater Cladocera, 3rd edn., Freshwater Biological Association, Sciencific Publication 5, Ambleside. [Google Scholar]
  • Smolders R., Baillieul M. and Blust R., 2005. Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress. Aquat. Toxicol., 73, 155–170. [CrossRef] [PubMed] [Google Scholar]
  • Sommer U., Gliwicz Z.M., Lampert W. and Duncan A., 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106, 433–471. [Google Scholar]
  • Stibor H., 1992. Predator induced life-history shifts in a fresh-water Cladoceran. Oecologia, 92, 162–165. [Google Scholar]
  • Tollrian R. and Dodson S.I., 1999. Inducible defences in cladocera: constrains, costs, and multipredator environments. In: Tollrian R. and Harvell C.D. (eds.), The Ecology and Evolution of Inducible Defenses, Princeton University Press, 177–202. [Google Scholar]
  • Vanni M.J. and Lampert W., 1992. Food quality effects on life-history traits and fitness in the generalist herbivore Daphnia. Oecologia, 92, 48–57. [CrossRef] [PubMed] [Google Scholar]
  • Vasconcelos V.M., Evans W.R., Carmichael W.W. and Namikoshi M., 1993. Isolation of microcystin-LR from a Microcystis (Cyanobacteria) waterbloom collected in the drinking-water reservoir for Porto, Portugal. J. Environ. Sci. Heal. A, 28, 2081–2094. [CrossRef] [Google Scholar]
  • Vijverberg J. and Boersma M., 1997. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia, 360, 233–242. [Google Scholar]
  • Viroux L., 2002. Seasonal and longitudinal aspects of microcrustacean (Cladocera, Copepoda) dynamics in a lowland river. J. Plankton Res., 24, 281–292. [CrossRef] [Google Scholar]
  • Wetzel R.G., 1993. Limnologia, 2nd edn., Fundação Calouste Gulbenkian, Lisboa. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.