Free Access
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 4, 2009
Page(s) 279 - 288
Published online 29 October 2009
  • Amarasinghe P.B., Vijverberg J. and Boersma M., 1997. Production biology of copepods and cladocerans in three south-east Sri Lankan low-land reservoirs and its composition to other tropical freshwater bodies. Hydrobiologia, 350, 145–162. [CrossRef] [Google Scholar]
  • Arcifa M.S., 1984. Zooplankton composition of ten reservoirs in southern Brazil. Hydrobiologia, 113, 137–145. [Google Scholar]
  • Attayde J.L. and Bozelli R.L., 1998. Assessing the indicator properties of zooplankton assemblages to disturbance gradients by canonical correspondence analysis. Can. J. Fish. Aquat. Sci., 55, 1789–1797. [Google Scholar]
  • Auer B., Elzer U. and Arunt H., 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: Influence of resource and predation. J. Plankton Res., 26, 6, 697–709. [Google Scholar]
  • Benndorf J., 1987. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz. Z. Hydrol., 49, 237–248. [Google Scholar]
  • Benndorf J., Wissel B., Sell A.F., Hornig U., Pitter P. and Bing W., 2000. Food web manipulation by extreme enhancement of piscivory: an invertebrate predator compensates for the effects of planktivorous fish on a plankton community. Limnologica, 30, 235–245. [Google Scholar]
  • Benndorf J., Bing W., Koop J. and Neubauer I., 2002. Top-down control of phytoplankton: The role of time scale, lake depth and trophic state. Freshwat. Biol., 47, 2282–2295. [Google Scholar]
  • Blumenshine S.C. and Hambright K.D., 2003. Top-down control in pelagic systems: A role for invertebrate predation. Hydrobiologia, 491, 347–356. [CrossRef] [Google Scholar]
  • Brooks J.L. and Dodson S.I., 1965. Predation, body size, and composition of plankton. Science, 150, 28–35. [CrossRef] [PubMed] [Google Scholar]
  • Carpenter S.R., Kitchell J. and Hodgson J.R., 1985. Cascading trophic interactions and lake productivity. BioScience, 35, 10, 634–638. [CrossRef] [Google Scholar]
  • Chiang S.C. and Du N.S., 1979. Fauna Sinica, Crustacea, freshwater Cladocera; Beijing: Science Press, Academia Sinica. [Google Scholar]
  • Currie D.J., Christie P.D. and Chapleau F., 1999. Assessing the strength of top-down influences on plankton abundance in unmanipulated lakes. Can. J. Fish. Aquat. Sci., 56, 427–436. [Google Scholar]
  • Elser J.J. and Goldman C.R., 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnol. Oceanogr., 36, 1, 64–90. [Google Scholar]
  • Gulati R.D., 1990. Zooplankton structure in the Loosdrecht lakes in relation to trophic status and recent restoration measures. Hydrobiologia, 191, 173–188. [CrossRef] [Google Scholar]
  • Hairston N.G., Smith F.E. and Slobodkin L.B., 1960. Community structure, population control, and competition. Am. Nat., 94, 421–425. [Google Scholar]
  • Havens K.E., 2002. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes. Sci. World J., 2, 926–942. [Google Scholar]
  • Havens K.E., East T.L., Marcus J., Essex P., Bolan B., Raymond S. and Beaver J.R., 2000. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtropical chain-of-lakes in Florida, USA. Freshwat. Biol., 45, 21–32. [Google Scholar]
  • Huang X.F., 1999. Survey, observation and analysis of lake ecology; Beijing: Standards Press of China. [Google Scholar]
  • Iglesias C., Mazzeo N., Goyenola G., Fosalba C., Mello F.T.D., García S. and Jeppesen E., 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwat. Biol., 53, 1797–1807. [Google Scholar]
  • Kasprzak P. and Koschel R., 2000. Lake trophic state, community structure and biomass of crustacean plankton. Verh. Int. Ver. Limnol., 27, 773–777. [Google Scholar]
  • Liu Z.W., 2001.The introduction of icefish, Neosalanx taihuensis Chen in China with several reference to the subtropical lakes of Yunnan Plateau (southwest China). Ver. Int. Ver. Limnol., 27, 3877–3880. [Google Scholar]
  • Mazumder A., 1994. Phosphorus-chlorophyll relationship under contrasting zooplankton community structure: potential mechanisms. Can. J. Fish. Aquat. Sci., 51, 401–407. [Google Scholar]
  • McCauley E. and Kalff J., 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci., 38, 458–463. [Google Scholar]
  • McQueen D.J., Post J.R. and Mills E.L., 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci., 43, 1571–1581. [Google Scholar]
  • Mehner T., Padisak J., Kasprzak P., Koschel R. and Krienitz L., 2008. A test of food web hypotheses by exploring time series of fish, zooplankton and phytoplankton in an oligo-mesotrophic lake. Limnologica, 38, 179–188. [Google Scholar]
  • Pace M.L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr., 31, 45–55. [Google Scholar]
  • Patalas K., 1971. Crustacean plankton communities in forty-five lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Boar. Can., 28, 231–244. [Google Scholar]
  • Pinto-Coelho R.P., Pinel-Alloul B.P., Méthot G. and Havens K.E., 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: Variation with trophic status. Can. J. Fish. Aquat. Sci., 62, 2, 348–361. [Google Scholar]
  • Qin J.H., Xu J. and Xie P., 2007. Diet overlap between the endemic fish Anabarilius grahami (Cyprinidae) and the exotic noodlefish Neosalanx taihuensis (Salangidae) in Lake Fuxian, China. J. Freshw. Ecol., 22, 3, 365–370. [Google Scholar]
  • Radke R. and Kahl U., 2002. Effects of a filter-feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto- and zooplankton in a mesotrophic reservoir: Results from an enclosure experiment. Freshwat. Biol., 47, 2337–2344. [Google Scholar]
  • Schulz M., Kasprzak P., Anwand K. and Mehner T., 2003. Diet composition and food preference of vendace (Coregonus albula (L.)) in response to seasonal zooplankton succession in Lake Stechlin. Arch. Hydrobiol. Special Issues Adv. Limnol., 58, 215–226. [Google Scholar]
  • Shapiro J., Lamarra V. and Lynch M., 1975. Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik R.L. and Fox J.L. (eds.), Water quality management through biological control, University of Florida, Gainesville, Report No. ENV-07-75-1, 85–96. [Google Scholar]
  • Shen J.R., 1979. Fauna Sinica, Crustacea, freshwater Copepoda; Beijing: Science Press, Academia Sinica. [Google Scholar]
  • Slusarczyk M., 1997. Impact of fish predation on a small-bodied cladoceran: Limitation or stimulation? Hydrobiologia, 342/343, 215–221. [Google Scholar]
  • Sommer U., Gliwicz Z.M., Lampert W. and Duncan A., 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol., 106, 422–477. [Google Scholar]
  • Sommer U., Sommer F., Santer B., Jamieson C., Boersma M., Becker C. and Hansen T., 2001. Complementary impact of copepods and cladocerans on phytoplankton. Ecol. Lett., 4, 545–550. [Google Scholar]
  • Stemberger R.S. and Miller K., 2003. Cladoceran body length and Secchi disk transparency in northeastern U.S. lakes. Can. J. Fish. Aquat. Sci., 60, 1477–1486. [Google Scholar]
  • Swadling K.M., Pienitz R. and Nogrady T., 2000. Zooplankton community composition of lakes in the Yukon and Northwest Territories (Canada): Relationship to physical and chemical limnology. Hydrobiologia, 431, 211–224. [CrossRef] [Google Scholar]
  • Taylor W.D. and Carter J.C.H., 1997. Zooplankton size and its relationship to trophic status in deep Ontario lakes. Can. J. Fish. Aquat. Sci., 54, 2691–2699. [Google Scholar]
  • Ter Braak C.J.F., 2004. Biometris – quantitative methods in the life and earth sciences, Plant Research International, Wageningen University and Research Centre, The Netherlands. [Google Scholar]
  • Tessier A.J. and Horwitz R.J., 1990. Influence of water chemistry on size structure of zooplankton assemblages. Can. J. Fish. Aquat. Sci., 47, 1937–1943. [Google Scholar]
  • Wang S., Xie P., Wu S. and Wang H., 2007a. Crustacean zooplankton size structure in aquaculture lakes: Is larger size structure always associated with higher grazing pressure? Hydrobiologia, 575, 203–209. [Google Scholar]
  • Wang S., Xie P., Wu S. and Wu A., 2007b. Crustacean zooplankton distribution patterns and their biomass as related to trophic indicators of 29 shallow subtropical lakes. Limnologica, 37, 242–249. [Google Scholar]
  • Wissel B., Freier K., Müller B., Koop J. and Benndorf J., 2000. Moderate planktivorous fish biomass stabilizes biomanipulation by suppressing large invertebrate predators of Daphnia. Arch. Hydrobiol., 149, 177–192. [Google Scholar]
  • Xie P. and Chen Y.Y., 2001. Invasive carp in China's plateau. Science, 294, 999–1000. [CrossRef] [Google Scholar]
  • Xie P. and Wu L., 2002. Enhancement of Moina micrura by the filter-feeding silver and bighead carps in a subtropical Chinese lake. Arch. Hydrobiol., 154, 2, 327–340. [Google Scholar]
  • Yang Y.F., Huang X.F. and Liu J.K., 1999. Long-term changes in crustacean zooplankton and water quality in a shallow, eutrophic Chinese lake densely stocked with fish. Hydrobiologia, 391, 195–203. [Google Scholar]
  • Zhang X., Xie P., Hao L., Chen F.Z., Li Y.L., Li S.X., Guo N.C. and Qin J.H., 2005. Present status and changes of the phytoplankton community after invasion of Neosalanx tailhuensis since 1982 in a deep oligotrophic plateau lake, Lake Fuxian in the subtropical China. J. Environ. Sci., 17, 3, 389–394. [Google Scholar]
  • Zhuang Y.L., Feng Z.H. and Li J.H., 1996. Study on the ecological reproduction of Neosalanx taihuensis in Yunnan plateau. J. Hydroecol., 83, 16–20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.