Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 1, 2009
Page(s) 55 - 58
DOI https://doi.org/10.1051/limn/09002
Published online 03 April 2009
  • Andersen T. and Hessen D.O., 1991. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol. Oceanogr., 36, 807-814. [CrossRef] [Google Scholar]
  • Brown H.G., Hensley C.P. and Thale J.E., 1973. Low-temperature digestion method for fish tissue and sediment prior to total mercury analysis. Transactions of the Kansas Academy of Science., 76, 4-8. [CrossRef] [Google Scholar]
  • Colina M., Ledo H., Gutiérrez E., Villalobos E. and Marín J., 1996. Determination of total phosphorus in sediments by means of high-pressure bombs and ion chromatography. J. Chromatogr., 739, 223-227. [CrossRef] [Google Scholar]
  • Farkas A., Salánki J. and Specziár A., 2002. Relation between growth and the heavy metal concentration in organs of bream Abramis brama L. populating Lake Balaton. Arch. Environ. Contam. Toxicol., 43, 236-243. [CrossRef] [PubMed] [Google Scholar]
  • Farkas A., Salánki J. and Specziár A., 2003. Age- and size specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Wat. Res., 37, 959-964. [CrossRef] [Google Scholar]
  • Frost P.C., Tank S.E., Turner M.A. and Elser J.J., 2003. Elemental composition of littoral invertebrates from oligortophic and eutrophic Canadian lakes. J. N. Am. Benthol. Soc., 22, 51-62. [CrossRef] [Google Scholar]
  • Going J.E. and Eisenreich S.J., 1974. Spectrophotometric studies of reduced molybdoantimonylphosphoric acid. Anal. Chim. Acta, 70, 95-106. [CrossRef] [Google Scholar]
  • Hendrixson H.A., Sterner R.W. and Kay A.D., 2007. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish Biol., 70, 121-140. [CrossRef] [Google Scholar]
  • Higgins K.A., Vanni M.J. and González M.J., 2006. Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos, 114, 419-430. [CrossRef] [Google Scholar]
  • Jarvie H.P., Withers P.J.A. and Neal C., 2002. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity. Hydrol. Earth Sys. Sci., 6, 113-132. [CrossRef] [Google Scholar]
  • Le Loc'h F., Hily C. and Grall J., 2008. Benthic community and food web structure on the continental shelf of the Bay of Biscay (North Eastern Atlantic) revealed by stable isotopes analysis. J. Marine Syst., 72, 17-34. [CrossRef] [Google Scholar]
  • Pai S., Yang C.C. and Riley J.P., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Anal. Chim. Acta, 229, 115-120. [CrossRef] [Google Scholar]
  • Penczak T. and Tátrai I., 1985. Contribution of bream, Abramis brama (L.), to the nutrient dynamics of Lake Balaton. Hydrobiologia, 126, 59-64. [CrossRef] [Google Scholar]
  • Pilati A. and Vanni M.J., 2007. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos, 116, 1663-1674. [CrossRef] [Google Scholar]
  • Reis P.A., Valente L.M.P. and Almeida C.M.R., 2008. A fast and simple methodology for determination of yttrium as an inert marker in digestibility studies. Food Chem., 108, 1094-1098. [CrossRef] [PubMed] [Google Scholar]
  • Ringmann S., Boch K., Marquardt W., Schuster M., Schlemmer G. and Kainrath P., 2002. Microwave-assisted digestion of organoarsenic compounds for the determination of total arsenic in aqueous, biological, and sediment samples using flow injection hybride generation electrothermal atomic absorption spectrometry. Anal. Chim. Acta, 452, 207-215. [CrossRef] [Google Scholar]
  • Sadiq M. and Zaidi T.H., 1983. A study of various factors affecting digestion of fish tissue prior to mercury determination. Int. J. Environ. Anal. Chem., 16, 57-66. [CrossRef] [PubMed] [Google Scholar]
  • Schnitzer G., Soubelet A., Testu C. and Chafey C., 1995. Comparison of open and closed focused microwave digestions in view of total mercury determination by cold vapour atomic absorption spectrometry. Microchim. Acta., 119, 199-209. [CrossRef] [Google Scholar]
  • Sereda J.M., Hudson J.J., Taylor W.D. and Demers E., 2008. Fish as sources and sinks of nutrients in lakes. Freshwat. Biol., 53, 278-289. [Google Scholar]
  • Sterner R.W. and George N.B., 2000. Carbon, nitrogen and phosphorus stoichiometry of cyprinid fishes. Ecology, 81, 127-140. [CrossRef] [Google Scholar]
  • Strickland J.D.H. and Parsons T.R., 1972. A practical handbook of seawater analysis. Fish. Res. Board Can. Bull., 167, Ottawa, Canada, 310 p. [Google Scholar]
  • Tanner D.K., Leonard E.N. and Brazner J.C., 1999. Microwave digestion method for phosphorus determination of fish tissue. Limnol. Oceanogr., 44, 708-709. [CrossRef] [Google Scholar]
  • Tanner D.K., Brazner J.C. and Brady V.J., 2000. Factors influencing carbon, nitrogen, and phosphorus content of fish from a Lake Superior coastal wetland. Can. J. Fish. Aquat. Sci., 57, 1243-1251. [CrossRef] [Google Scholar]
  • Walve J. and Larsson U., 1999. Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J. Plank. Res., 21, 2309-2321. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.