A description of *Cernosvitoviella tridentina*, a new species of Enchytraeidae (Oligochaeta) from the Italian Alps.

E. Dumnicka

Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Krakow, Poland. E-mail: dumnicka@iop.krakow.pl

A new species of Enchytraeidae, *Cernosvitoviella tridentina* sp. n., is described from alpine streams (Stelvio National Park, Trentino). *C. tridentina* sp. n. belongs to a group of species with spermathecae confined to the V segment; it particularly resembles *Cernosvitoviella carpathica* (Cernosvitov), *C. minor* Dozsa-Farkas and *C. celere* Nurminen, but differs from these species by some important anatomical features: the presence of small seminal vesicles, longer ectal ducts of the spermathecae and (from two first species) by deep incision of the posterior margin of the brain.

Keywords: Oligochaeta, Enchytraeidae, new species, alpine streams.

Introduction

The studies on enchytraeids fauna of Italy have a history of one hundred years (Cognetti 1901, 1903, Dequal 1914, Issel 1905, Sciacchitano 1932, Nielsen and Christensen 1961, 1963, Nurminen 1977, Rota 1994, 1995). However, these works concerned almost exclusively soil inhabitants. Enchytraeids from freshwater environment, especially from running waters, were rarely studied (Kasprzak 1976, Dumnicka & Boggero in press), though they are common and sometimes abundant in Alpine streams (Malard et al. 2001, Maiolini & Lencioni 2001). During the realization of the HIGHEST program (Health and Integrity of Glacial Headwater EcoSystems in Trentino), a detailed ecological study of alpine headwater streams, benthic macroinvertebrate samples were collected in glacial and non-glacial streams between 1985 and 2600 m a.s.l., within the two river catchments: Noce Bianco (NB) and Careser (CR), situated in Stelvio National Park, Trentino. A new species of *Cernosvitoviella* N. & C. 1959 was found and is described in this paper.

Description of the species

Holotype: whole mounted specimen in Canada balsam. Kept in the collection of Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland.

Type locality: stream Careser (site CR4 Q4), Trentino, Italy, 46° 25’ N, 10° 43’ E, 1985 m a.s.l., collected 14 June 2001, leg. Lencioni V. & Maiolini B.

Paratypes: two whole mounted specimens from the tape locality are kept in the collection of Institute of Nature Conservation.

Three whole mounted specimens from stream Noce Bianco (NB2bis Q5), collected 30 July 2001, leg. Lencioni V. & Maiolini B., are kept in the HIGHEST collection in the Natural Science Museum of Trento (Italy).

Within each sampling reach, 5 replicate (Q1 - Q5)
kick samples of zoobenthos were collected using a standard pond net (mesh size of 250 µm, mouth of 30 x 30 cm), disturbing the substrate for 1 minute within an area of 0.1 m². Samples were washed through a 250 µm mesh funnel to remove excess water and then preserved in 75% ethanol. Detailed information concerning studied stations and streams were published by Lencioni & Maiolini (2002).

Etymology: the species was named after the Latin name of the geographical area.

Small species - length of preserved specimens 2 - 3.5 mm. Number of segments: 24 - 31 (segments were counted on 6 individuals only, because in the majority of specimens the caudal part was missing). Setae 32 - 48 µm long in anterior segments, a little shorter posteriorly, sigmoid, sharply pointed, nodulus situated at about 1/3 from the distal end of seta. Setal formula as follows (5),6,7,8(9)-5,6 : (5),6,7,8-5,6, sometimes bundles of 4 setae were observed in the caudal part of the body. Setae absent in segment XII. Small cutaneous glands present on prostomium, peristomium and on clitellar segments of mature worms.

Brain about 1.5 times longer than wide, deeply incised posteriorly. Lateral edges slightly concave or straight (Fig. 1A). Two pairs of pharyngeal glands present in IV - V: primary glands small, usually united dorsally, connection sometimes very narrow; second pair of secondary glands stout, almost spherical (Fig. 2). Chloragogen cells from segment VI. Coelomocytes present in a small number, oval and spherical, transparent, without granulation, or with granules clustered along coelomocyte walls (Fig. 1B). Unpaired nephridia observed at VI/VII and VII/VIII. Anteseptal part small, consisting of the funnel only, postseptal part elongated. Dorsal vessel begins in the XIII segment.

Clitellum situated on 1/2XI - XII, sometimes on 1/2XI - 1/2XIII, clitellar gland cells irregularly arranged, inconspicuous. Seminal vesicles small, confined to XI. Sperm funnels barrel-shaped (Fig. 1C), ratio length : width about 1-1.5; collar distinct, slightly narrower than the funnel. Vas deferens irregularly coiled, long - at least five times longer than sperm funnel, ended with a small enlargement formed by thickened walls. The ectal opening of this structure (penial bulb) surrounded by densely distributed glands (Fig. 1D, E). Spermathecae confined to V (Fig. 2). Ampulla small, spherical (Fig. 1F), sometimes its shape is slightly irregular (Fig.1G) - most probably due to the
preservation. Ectal duct long, 4 - 5 times longer than ampulla, having the same width along all length, devoid of glands at the ectal orifice. The total length of each spermatheca slightly smaller than the diameter of the worm (Fig. 2). One or two mature eggs present at a

Discussion

Up to now, more than 20 species have been described as belonging to the genus *Cernosvitoviella* N. & C. 1959. Among them only 3 species: *C. minor* Dózsa-Farkas, *C. celere* Nurminen and *C. carpatica* (Černosvitov), are similar to *Cernosvitoviella tridentina* sp.n. (Table 1). They were described based on preserved (*C. carpatica*) or living material (*C. minor*). In the case of *C. celere* the author did not specify which kind of material was elaborated. The preservation of the material could influence significantly the dimensions of the studied structures, but their shapes do not change considerably. Dózsa-Farkas (1990) describing *C. minor* and Rota & Healy (1999) completing this description had access to both live and preserved specimens, but in both papers only differences in dimensions were noted. Therefore I think that the comparison of diagnostic features of live and preserved specimens should be made. The above mentioned species differ by some important anatomical features. *C. carpatica* could be distinguished from all other species from this genus by having three pairs of pharyngeal glands. Spermathecae of all the above mentioned species are confined to segment V; their ampullae are small and spherical (onion-shaped in *C. celere*) and the ectal ducts are longer than the ampullae (Fig. 3). The length of ducts varies depending on the species - the shortest ones were recorded in *C. carpatica* - less than two times longer than ampullae (Fig. 3A) (Černosvitov

![Fig. 2. Localization of pharyngeal glands and spermathecae (schematized).](image)

Table 1. Comparison of anatomical structures of some *Cernosvitoviella* species.

<table>
<thead>
<tr>
<th>Species</th>
<th>No of segments</th>
<th>Pharyngeal glands</th>
<th>Coelomic vesicle</th>
<th>Seminal vesicle</th>
<th>Pharynx funnels</th>
<th>Spermatheca ratio</th>
<th>Ectal duct ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. tridentina sp.n.</td>
<td>2-3.5</td>
<td>24-31</td>
<td>2+2</td>
<td>oval and spherical</td>
<td>present, small</td>
<td>barrel-shaped</td>
<td>5-6</td>
</tr>
<tr>
<td>C. carpatica (Černosvitov)</td>
<td>3-4</td>
<td>25-28</td>
<td>3+3</td>
<td>oval</td>
<td>absent</td>
<td>cylindrical</td>
<td>3-3.5</td>
</tr>
<tr>
<td>C. minor</td>
<td>2-3.5</td>
<td>18-24</td>
<td>2+2</td>
<td>oval and spindle-shaped</td>
<td>absent</td>
<td>pear-shaped</td>
<td>2.5-3 (3)</td>
</tr>
<tr>
<td>Dózsa-Farkas Nurminen</td>
<td>2-3</td>
<td>23-26</td>
<td>2+2</td>
<td>spindle-shaped</td>
<td>absent</td>
<td>bottle-shaped</td>
<td>?</td>
</tr>
</tbody>
</table>

(a) after Nielsen & Christensen (1959), (b) after Kasprzak (1979), (c) after Dózsa-Farkas (1990), (d) after Rota & Healy (1999)
Kasprzak (1979) found specimens belonging to this species with ectal ducts up to 4 times longer than ampullae (Fig. 3B) but these specimens had empty ampullae, which may indicate that they did not reach full maturity. The changes of ampullae shape and changes of the ratio between the length of ampullae to that of the ectal duct during maturation process can be observed in many *Cernosvitoviella* species, that is why only completely mature specimens should be taken for comparison. For *C. minor* (Fig. 3C & D) and *C. celere* (Fig. 3E) this ratio amounts to about 3, whereas in the newly described species it reaches up to 5. The remaining species with spermathecae confined to segment V or V and VI, have ampullae longer than their ectal ducts (*C. immota* (Knöllner 1935), *C. christenseni* Dash 1970, *C. tatrensis* (Kowalewski 1914), *C. pusilla* Nurminen 1973) or of the same length (*C. atrata* (Bretsch 1903), *C. crassoductus* Dózska-Farkas 1990, *C. microtheca* Rota & Healy 1999), but the three last mentioned species have funnel-shaped sperm funnels. Another three species with spermathecae localized in V-VI (*C. aggtelekiensis* Dózska-Farkas 1970, *C. parvisetata* Gadzinska 1974 and *C. goodhui* Healy 1975) differ from *C. tridentina* sp.n. by having the widening of
the ectal part of the duct. The shape of the sperm funnel and duct is also a feature permitting to distinguish the newly described species from *C. minor*, *C. celere* and *C. carpatica*. *C. tridentina* sp.n. (Fig. 1D, E) and *C. carpatica* (Fig. 3F, G) both have a muscular widening at the end of the duct called by Černosvitov (1928) «penial bulbus». It has narrow canal inside (Fig. 3G). *C. celere* (Fig. 3H) and *C. minor* (after original description) (Fig. 3I) have sperm duct of the same width to the end. Rota & Healy (1999) recorded the presence of distal swelling of the sperm duct in *C. minor* (Fig. 3J), but the structure of this swelling seems to have different character than that in *C. tridentina* sp.n. According to the figure published by Rota & Healy (1999) this widening is not muscular, but is formed by a widening of the inside canal. Moreover, brains of *C. minor* (Fig. 3K) and *C. carpatica* (Fig. 3L) are only slightly indented posteriorly, whereas in *C. tridentina* sp.n. the brain is deeply incised (as in the majority of *Cernosvitoviella* species). *C. celere* has spindle-shaped coelomocytes only, *C. minor* has spindle-shaped and oval ones, whereas *C. carpatica* and *C. tridentina* sp.n. have oval coelomocytes exclusively. The presence of seminal vesicles distinguishes *C. tridentina* from most of other species belonging to the *Cernosvitoviella* genus. Only *C. immota* has big seminal vesicles, reaching the VIII segment, while *C. bulboducta* Martinez-Ansemil & Collado 1996 has this feature poorly developed (or even absent).

Although the variability of morphological and anatomical features important for species determination is high among this genus, the whole combination of features must be taken into account for correct identification.

Acknowledgments:

I wish to thank Valeria Lencioni and Bruno Maiolini from the Museum of Natural Sciences of Trento for giving to me oligochaete materials collected within the HIGHEST framework. This research is supported by the Museum of Natural Sciences of Trento and by the Autonomous Province of Trento (Italy).

References

Dumnicka E. & Boggero A. in press. - Ecological implications of freshwater oligochaetes distribution in two mountain ranges in Europe: Tatra Mountains (Poland) and Alps (Italy). Hydrobiologia.