Edmulmeatus grandis: an extraordinary new genus and species of Baetidae (Insecta: Ephemeroptera) from Madagascar

C.R. Lugo-Ortiz 1
W.R. McCafferty 1

Keywords: Ephemeroptera, Baetidae, Edmulmeatus grandis, new genus, new species, Madagascar.

Edmulmeatus grandis, n. gen. and sp. (Ephemeroptera: Baetidae) is described from larvae collected from eastern Madagascar. The genus is distinguished primarily by having a relatively very large head capsule, large and robust mandibles with specialized armature, and gills on abdominal segments 2-7 only. The relatively massive mandibles suggest that larvae have unusual feeding habits compared to other baetids, being probably a macrovore-herbivore adapted for cutting and crushing plant food items. Edmulmeatus is possibly related to other Afrotropical genera having two rows of denticles on the tarsal claws.

1. Introduction

The faunal composition of the family Baetidae (Insecta: Ephemeroptera) in Madagascar is poorly known and in serious need of being documented. Only seven species have been variously described in Centroptilum Eaton, Cloeon Leach, Nesoptiloides Demoulin, and Pseudopannota Waltz and McCafferty (Navás 1926, 1930, 1936; Demoulin 1966, 1968, 1970, 1973; Waltz & McCafferty 1987). Reports of Centroptilum are questionable because species assigned to it in Africa have been shown to represent diverse evolutionary lineages (Gillies 1990; Wiillot & Gillies 1994; Lugo-Ortiz & McCafferty 1996abc; Barber-James & McCafferty 1997), and those of Cloeon remain provisional because the specimens upon which they are based consist only of subimagos and demaged adults, whose descriptions are too brief. This dearth of baetid reports from Madagascar is particularly worrisome because the island probably has a diverse array of endemic species similar to that shown by other insect groups (Stork 1997), and human population and agricultural pressures are resulting in the rapid degradation and fragmentation of habitats and generalized extinction of species and extirpation of geographic populations (Myers 1988ab; Wilson 1992). Thus, the documentation of the baetid fauna, as well as other mayflies, needs to be prioritized not only to elucidate aspects related to their evolutionary and biogeographic history, but to identify species of particular concern that may lead to the protection of their habitats.

In keeping with that philosophy, and as part of our ongoing survey of the baetid fauna of the Afrotopics (McCaffery & de Moor 1995; Lugo-Ortiz & McCaffery 1997), we report a new genus and species of Baetidae, Edmulmeatus grandis, from eastern Madagascar.

1. Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.

Article available at http://www.limnology-journal.org or http://dx.doi.org/10.1051/limn/1997018
ferty 1996abc, 1997ab), we herein describe a distinctive new genus and species of Baetidae based on larval specimens collected from eastern Madagascar. The fact that the new taxon is from eastern Madagascar is of special significance because it has been regarded to be the most environmentally threatened region on the island (Myers 1988a), and it is possible that the mayflies we describe herein are also threatened or even endangered in that region. The specimens upon which this study is based are housed in the Purdue Entomological Research Collection, West Lafayette, Indiana.

2.1. Description

LARVA

— Head
Capsule enlarged relative to body, hemispherical (Figs. 1, 2).
Labrum (Fig. 3) anteriorly broadly rounded, with deep anteromedial notch.
Hypopharynx (Fig. 4) with somewhat broad lingua and superlinguae.
Mandibles (Figs. 5, 6) massive and robust, with fused but distinctive incisors and molar region with well-developed, broad-based denticles.
Maxillae (Fig. 7, 8) short and broad; palps two segmented.
Labium (Figs. 9, 10) reduced relative to other mouthparts; glossae with slight apicomedial emargination; paraglossae somewhat narrow elongate; palps relatively long, extending beyond apices of glossae and paraglossae; palp segment 2 with well-developed distomedial projection; segment 3 somewhat elongate, subconical.
— Thorac
Legs (Fig. 11) robust; femora without villopore; tarsal claws (Fig. 12) with two rows of denticles.
— Abdomen
Terga (Fig. 13) with scale bases and well-defined posterior marginal spination.
Gills (Figs. 14, 15) on abdominal segments 2-7, plate-like, marginally serrate.
Paraprocts (Fig. 16) with marginal spines.
Three caudal filaments present, with abundant fine, long, simple setae medially.

ADULT
Unknown.

2.2. Etymology

The generic name is constructed from the sequence of the first three letters of the last names of three world-renowned ephemeropterists, G.F. Edmunds, G. Ulmer, and A.E. Eaton, and it is given a Latin masculine ending.

2.3. Type species

Edmulmeatus grandis Lugo-Ortiz & McCafferty, n. sp.

2.4. Species included

Edmulmeatus grandis Lugo-Ortiz & McCafferty, n. sp.

2.5. Distribution

Madagascar.

2.6. Discussion

Larvae of Edmulmeatus are distinguished by the enlarged head capsule (Figs. 1, 2), massive mandibles with strongly denticulate incisors across the entire apical margin (Figs. 5, 6), relatively small maxillae (Fig. 7) and labium (Fig. 9), distomedial projection of segment 2 of the labial palps (Fig. 9), apicomedial emargination of the glossae (Fig. 10), and presence of gills on abdominal segments 2-7 only.

The nature of the mandibles (Figs. 5, 6) suggests that larvae of Edmulmeatus are macrovores capable of cutting and crushing large food items. The absence of the molae that are found on the mandibles of all other mayflies (e.g., McShaffrey & McCafferty 1990) would indicate that food is not strained and probably not compacted by Edmulmeatus. The general sparseness of mouthpart setae suggests that small particles are neither handled nor filtered by Edmulmeatus, as in most mayflies (e.g., Brown 1961; McShaffrey & McCafferty 1986). Furthermore, none of the mouthparts appear adapted for impaling, and some acute mouthparts are always associated with carnivory in mayflies (e.g., McCafferty & Provonsha 1986). The extremely large head capsule (Figs. 1, 2) houses very large flexor and abductor muscles attached to the mandibles that evidently can generate a force necessary for cutting or crushing large items. Based on all of the above, we hypothesize that larvae of Edmulmeatus are macrovore-herbivores, possibly feeding on large filamentous algae or even aquatic tracheophytes. If this hypothesis is correct, Edmulmeatus would represent the first instance of such a macrovore-herbivore in the family Baetidae. We also hypothesize that the two rows of relatively robust setae on the ventral margin of the tarsi (Figs.

12, 13) aid larvae of *Edmulmeatus* in climbing among the vegetation that they possibly feed on.

Phylogenetic relationships of *Edmulmeatus* are difficult to establish at present because the genus is so unusual. It is possible, however, that *Edmulmeatus* is related to African and Malagasy genera with two rows of denticles on the tarsal claws, including *Acanthiops* Waltz & McCafferty, *Afroptilum* Gillies, *Centroptiloides* Lestage, *Dicentroptilum* Willot & Gillies, *Neosptiloides* Demoulin and *Thraulobaetodes* Elouard & Hideux.

2.7.1. Description

LARVA

Body length (early to middle instar): 7.3-7.5 mm; caudal filaments length: 4.9-5.1 mm.

— **Head**

Coloration light yellow-brown, with faint complex markings on vertex (Figs. 1, 2). Antennae nearly 2.0x as long as head capsule.

Labrum (Fig. 3) dorsally with submedial pair of long, fine, simple setae and anterior submarginal row of three to four long, fine, simple setae.

Hypopharynx as in Figure 4.

Left mandible (Fig. 5) incisors with six denticles; molar region with two sets of denticles.

Right mandible (Fig. 6) incisors with six denticles; molar region with three somewhat sharp denticles.

Maxillae (Figs. 7, 8) with four sharp denticles on crown of galealaciniae; three to four long, fine, simple setae at base of denticles; three to four short, fine, simple setae on medial hump; palp segment 1 nearly twice as long as segment 2.

Labium (Figs. 9, 10) with glossae shorter than paraglossae; glossae (Fig. 10) medially with short, simple setae, apically with long, fine, simple setae; paraglossae apically with numerous long, fine, simple setae; palp segments with minute, fine, simple setae scattered over surface; palp segment 1 subequal in length to segments 2 and 3 combined.

— **Thorax**

Coloration pale yellow-brown, with no distinct color pattern.

Hindwingpads absent.

Legs (Fig. 11) pale yellow-brown, with no distinct color pattern; femora dorsally with row of relatively long, somewhat robust, apically acute, simple setae and randomly spaced short, fine, simple setae and ventrally with short, fine, apically acute, simple setae; tibiae dorsally with short, fine, simple setae and ventrally with somewhat robust, simple setae increasing in length distally; tarsi dorsally with short, fine, simple setae and ventrally with two rows of somewhat robust, simple setae increasing in length distally; tarsal claws (Fig. 12) with two rows of 10-12 denticles each.

— **Abdomen**

Coloration pale yellow-brown, with no distinct color pattern; terga usually somewhat darker in posterior half.

Terga (Fig. 13) with abundant small scale bases and scattered minute, fine, simple setae; posterior marginal spination somewhat irregular, spines usually 1.5x longer than basal width.

Sterna pale yellow-brown.

Gills 3-6 (Fig. 14) well tracheated, 2 and 7 untracheated, margins (Fig. 15) with minute serrations.

Paraprocts (Fig. 16) with 25-30 sharp marginal spines.

Caudal filaments pale yellow-brown, with somewhat broad medium brown band in mid region; medial caudal filament as long as cerci.

ADULT

Unknown.

2.7.2. Material examined

Paratypes: Two larvae, same data as holotype [mouthparts, forelegs, tergum 4, gills 4, and paraproct of one larva mounted on slide (medium: Euparal)].

2.7.3. Etymology

The specific epithet reflects the Latin meaning of magnificent.

2.7.4. Discussion

Although no comparative species of *Edmulmeatus* are known, we expect that the dorsal setation of the labrum (Fig. 3), mandibular denticulation (Figs. 5, 6), relative lengths of the maxillary palps (Fig. 7), degree of development of the medial projection on labial palp segment 2 (Fig. 9), absence of hindwingpads, somewhat irregular posterior spination of the terga (Fig. 13), paraproctal spination (Fig. 16), and general body coloration may prove to be of importance for specific diagnosis. The untracheated gills 2 and 7, compared to gill 5 and others, may also be of some specific importance.

The specimens upon which the description is based are early to middle instar larvae. We therefore expect
mature larvae to be nearly twice as large. We do not expect, however, any substantial allometric changes associated with growth and development to affect the relative large size of the head capsule or mandibles because such changes are atypical of Baetidae.

Acknowledgments

We thank George Edmunds, Jr. (Salt Lake City, Utah) for the donation of the specimens used in this study. We also thank Dave McShaffrey (Marietta College, Ohio) for discussing the possible functional morphology of the mouthparts of Edmulmeatus with us and Alain Thomas (Université Paul Sabatier, Toulouse, France) for translating the abstract of this paper into French. This paper has been assigned Purdue Agricultural Research Program Journal No. 15373.

References

