SUPPLEMENTARY MATERIAL

Table S1. The percentages of sequence divergence within (on the diagonal) and among (below diagonal) three clades of ML phylogenetic tree based on the ITS sequence.

<table>
<thead>
<tr>
<th>Clade</th>
<th>I-ITS</th>
<th>II-ITS</th>
<th>III-ITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-ITS</td>
<td>0-1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-ITS</td>
<td>6.3-8.4</td>
<td>0-1.9</td>
<td></td>
</tr>
<tr>
<td>III-ITS</td>
<td>5.6-7.7</td>
<td>4.8-6.9</td>
<td>0-2.7</td>
</tr>
</tbody>
</table>

Table S2. The percentages of sequence divergence within (on the diagonal) and among (below diagonal) three clades of ML phylogenetic tree based on the COI gene partial sequence.

<table>
<thead>
<tr>
<th>Clade</th>
<th>I-COI</th>
<th>II-COI</th>
<th>III-COI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-COI</td>
<td>0-2.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-COI</td>
<td>19.5-22.7%</td>
<td>0-4.1%</td>
<td></td>
</tr>
<tr>
<td>III-COI</td>
<td>19.0-26.0%</td>
<td>10.4-16.7%</td>
<td>0-8.9%</td>
</tr>
</tbody>
</table>

Table S3. The F_{st} values among (below diagonal) and within (on the diagonal) five populations of cryptic species II-ITS based on the ITS sequences.

<table>
<thead>
<tr>
<th>Population</th>
<th>WC</th>
<th>WX</th>
<th>GC</th>
<th>GX</th>
<th>GQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC</td>
<td>0.0798</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>0.0258</td>
<td>0.1259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>0.0043</td>
<td>0.0351</td>
<td>0.0860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GX</td>
<td>0.1142</td>
<td>0.1944</td>
<td>0.0873</td>
<td>0.0693</td>
<td></td>
</tr>
<tr>
<td>GQ</td>
<td>0.0592</td>
<td>0.1316</td>
<td>0.0626</td>
<td>0.0218</td>
<td>0.0358</td>
</tr>
</tbody>
</table>

Table S4. The F_{st} values among (below diagonal) and within (on the diagonal) five populations of cryptic species II-COI based on the COI gene partial sequence.

<table>
<thead>
<tr>
<th>Population</th>
<th>WC</th>
<th>WX</th>
<th>GC</th>
<th>GX</th>
<th>GQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC</td>
<td>0.4807</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>-0.0769</td>
<td>0.5240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>0.8279</td>
<td>0.8471</td>
<td>0.4858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GX</td>
<td>0.1100</td>
<td>-0.0425</td>
<td>0.3957</td>
<td>0.3788</td>
<td></td>
</tr>
<tr>
<td>GQ</td>
<td>0.8028</td>
<td>0.8098</td>
<td>0.0860</td>
<td>0.4089</td>
<td>0.4746</td>
</tr>
</tbody>
</table>

Table S5. The F_{st} values among (below diagonal) and within (on the diagonal) six populations of cryptic species III-ITS based on the ITS sequences.

<table>
<thead>
<tr>
<th>Population</th>
<th>WC</th>
<th>WX</th>
<th>WQ</th>
<th>GC</th>
<th>GX</th>
<th>GD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC</td>
<td>0.3163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>0.0785</td>
<td>0.3298</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQ</td>
<td>0.0279</td>
<td>0.0064</td>
<td>0.3223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>0.6342</td>
<td>0.6645</td>
<td>0.6566</td>
<td>0.3298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GX</td>
<td>0.0960</td>
<td>-0.0887</td>
<td>0.0435</td>
<td>0.6333</td>
<td>0.3834</td>
<td></td>
</tr>
<tr>
<td>GD</td>
<td>0.1320</td>
<td>-0.0135</td>
<td>0.0253</td>
<td>0.7108</td>
<td>-0.0610</td>
<td>0.3416</td>
</tr>
</tbody>
</table>
Table S6. The F_{st} values among (below diagonal) and within (on the diagonal) six populations of cryptic species III-COI based on the COI gene partial sequence.

<table>
<thead>
<tr>
<th>Population</th>
<th>WC</th>
<th>WX</th>
<th>WQ</th>
<th>GC</th>
<th>GX</th>
<th>GD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC</td>
<td>0.2451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>0.2157</td>
<td>0.1106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQ</td>
<td>0.1082</td>
<td>0.2235</td>
<td>0.2322</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>0.3158</td>
<td>0.0834</td>
<td>0.2308</td>
<td>0.1660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GX</td>
<td>0.2186</td>
<td>0.2757</td>
<td>-0.0471</td>
<td>-0.4222</td>
<td>0.2621</td>
<td></td>
</tr>
<tr>
<td>GD</td>
<td>0.1860</td>
<td>0.2610</td>
<td>0.0814</td>
<td>0.3159</td>
<td>0.5510</td>
<td>0.2554</td>
</tr>
</tbody>
</table>